An online monitoring methodology for grinding state identification based on real-time signal of CNC grinding machine

研磨 机械加工 时域 频域 机床 信号(编程语言) 砂轮 校准 机械工程 信号处理 数控 计算机科学 工程类 数字信号处理 电子工程 计算机视觉 数学 程序设计语言 统计
作者
G. Li,Yan Bao,Hao Wang,Zhigang Dong,Xiaoguang Guo,Renke Kang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110540-110540 被引量:20
标识
DOI:10.1016/j.ymssp.2023.110540
摘要

The grinding state is closely related to machining accuracy, wheel wear, and material removal efficiency. Changes in the grinding state often mean instability of the processing state, which will cause additional costs such as wheel wear and a decline in the processing quality of the workpiece. Various methods for monitoring grinding conditions have been proposed in the past, but none of these methods have been universally successful due to the complex nature of the machining processes. This research presents a new method for real-time monitoring of grinding forces and workpiece surface topography during grinding processing using real-time signals from the computer numerical control (CNC) system of the grinding machine without any additional sensors. By extracting real-time signals during the grinding process for time and frequency-domain analysis, the grinding state can be identified online. Based on this method, the time–frequency domain calibration experiment is carried out. The resolution of the time-domain calibration results reached 6e-5N, which can characterize the real-time change of grinding force during the grinding process. The frequency-domain analysis can achieve real-time monitoring of the spindle state of the workpiece and the grinding spindle state and obtain the frequency-domain transmission path under different processing conditions. The workpiece surface morphology is estimated in real-time using the feedback signal of the grinding machine, and the results are verified in mm, μm, and nm scales. The test results show that the use of real-time signals from the grinding machine to monitor the grinding state has the advantages of high precision, reliability, and convenient implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qijie完成签到,获得积分10
刚刚
刚刚
刚刚
lzgy完成签到,获得积分10
刚刚
刚刚
nuoyefenfei完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
爱穿毛袜完成签到,获得积分10
1秒前
huxely完成签到,获得积分10
1秒前
healer完成签到,获得积分10
1秒前
席河木鱼完成签到,获得积分10
1秒前
子车茗应助叶子羽采纳,获得20
1秒前
1秒前
柒柒发布了新的文献求助10
2秒前
ceeray23应助小柴胡采纳,获得10
2秒前
2秒前
塵埃发布了新的文献求助10
2秒前
茕凡桃七完成签到,获得积分10
2秒前
岑岑完成签到,获得积分10
2秒前
彭于晏应助vogo7采纳,获得10
2秒前
玊尔完成签到,获得积分10
2秒前
3秒前
酷炫煎饼完成签到,获得积分10
3秒前
3秒前
和谐以冬完成签到 ,获得积分10
4秒前
香蕉觅云应助..采纳,获得10
4秒前
123完成签到 ,获得积分10
4秒前
狐尔莫发布了新的文献求助10
4秒前
4秒前
展希希发布了新的文献求助10
4秒前
友好雅山发布了新的文献求助10
4秒前
Hudson完成签到,获得积分10
5秒前
屿溡完成签到,获得积分10
6秒前
shelly完成签到,获得积分10
6秒前
NexusExplorer应助123采纳,获得10
6秒前
song完成签到,获得积分10
6秒前
6秒前
王大哥完成签到,获得积分10
6秒前
lz123完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997