An online monitoring methodology for grinding state identification based on real-time signal of CNC grinding machine

研磨 机械加工 时域 频域 机床 信号(编程语言) 砂轮 校准 机械工程 信号处理 数控 计算机科学 工程类 数字信号处理 电子工程 计算机视觉 数学 程序设计语言 统计
作者
G. Li,Yan Bao,Hao Wang,Zhigang Dong,Xiaoguang Guo,Renke Kang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110540-110540 被引量:11
标识
DOI:10.1016/j.ymssp.2023.110540
摘要

The grinding state is closely related to machining accuracy, wheel wear, and material removal efficiency. Changes in the grinding state often mean instability of the processing state, which will cause additional costs such as wheel wear and a decline in the processing quality of the workpiece. Various methods for monitoring grinding conditions have been proposed in the past, but none of these methods have been universally successful due to the complex nature of the machining processes. This research presents a new method for real-time monitoring of grinding forces and workpiece surface topography during grinding processing using real-time signals from the computer numerical control (CNC) system of the grinding machine without any additional sensors. By extracting real-time signals during the grinding process for time and frequency-domain analysis, the grinding state can be identified online. Based on this method, the time–frequency domain calibration experiment is carried out. The resolution of the time-domain calibration results reached 6e-5N, which can characterize the real-time change of grinding force during the grinding process. The frequency-domain analysis can achieve real-time monitoring of the spindle state of the workpiece and the grinding spindle state and obtain the frequency-domain transmission path under different processing conditions. The workpiece surface morphology is estimated in real-time using the feedback signal of the grinding machine, and the results are verified in mm, μm, and nm scales. The test results show that the use of real-time signals from the grinding machine to monitor the grinding state has the advantages of high precision, reliability, and convenient implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待思远发布了新的文献求助10
1秒前
加减乘除完成签到,获得积分10
1秒前
harden9159完成签到,获得积分10
3秒前
Hello应助123采纳,获得30
3秒前
Java完成签到,获得积分10
4秒前
马登完成签到,获得积分10
5秒前
pp发布了新的文献求助10
5秒前
5秒前
朴素的焦完成签到,获得积分10
6秒前
身强力壮运气好完成签到,获得积分10
6秒前
等我吃胖完成签到,获得积分10
6秒前
cat完成签到 ,获得积分10
8秒前
shuogesama完成签到,获得积分10
8秒前
井莹完成签到,获得积分10
9秒前
zokor完成签到 ,获得积分10
9秒前
企鹅公路发布了新的文献求助10
10秒前
YY完成签到,获得积分10
11秒前
不甜完成签到 ,获得积分10
11秒前
豪的花花完成签到,获得积分10
12秒前
czx完成签到,获得积分10
13秒前
xiezizai完成签到,获得积分10
13秒前
Zard完成签到,获得积分10
14秒前
。。。。。。完成签到,获得积分10
18秒前
李好运完成签到 ,获得积分10
20秒前
喜悦的水云完成签到 ,获得积分10
23秒前
难过冷玉完成签到,获得积分10
24秒前
友好傲白完成签到,获得积分10
24秒前
jia完成签到,获得积分10
24秒前
张杠杠完成签到 ,获得积分10
26秒前
狂野书易完成签到,获得积分10
26秒前
26秒前
柒月完成签到,获得积分10
27秒前
文鹏完成签到,获得积分10
28秒前
1310发布了新的文献求助10
29秒前
得鹿梦鱼完成签到,获得积分10
29秒前
小云完成签到 ,获得积分10
31秒前
我我我完成签到,获得积分10
31秒前
wangfeng完成签到 ,获得积分10
31秒前
31秒前
Leo发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162539
求助须知:如何正确求助?哪些是违规求助? 2813402
关于积分的说明 7900247
捐赠科研通 2472973
什么是DOI,文献DOI怎么找? 1316615
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175