Functional Materials for Memristor‐Based Reservoir Computing: Dynamics and Applications

记忆电阻器 神经形态工程学 油藏计算 计算机科学 非线性系统 物理系统 人工神经网络 计算机体系结构 计算 人工智能 记忆晶体管 分布式计算 电阻随机存取存储器 电子工程 循环神经网络 工程类 电气工程 算法 物理 量子力学 电压
作者
Guohua Zhang,Jingrun Qin,Yue Zhang,Guodong Gong,Ziyu Xiong,Xiangyu Ma,Ziyu Lv,Ye Zhou,Su‐Ting Han
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (42) 被引量:32
标识
DOI:10.1002/adfm.202302929
摘要

Abstract The booming development of artificial intelligence (AI) requires faster physical processing units as well as more efficient algorithms. Recently, reservoir computing (RC) has emerged as an alternative brain‐inspired framework for fast learning with low training cost, since only the weights associated with the output layers should be trained. Physical RC becomes one of the leading paradigms for computation using high‐dimensional, nonlinear, dynamic substrates. Among them, memristor appears to be a simple, adaptable, and efficient framework for constructing physical RC since they exhibit nonlinear features and memory behavior, while memristor‐implemented artificial neural networks display increasing popularity towards neuromorphic computing. In this review, the memristor‐implemented RC systems from the following aspects: architectures, materials, and applications are summarized. It starts with an introduction to the RC structures that can be simulated with memristor blocks. Specific interest then focuses on the dynamic memory behaviors of memristors based on various material systems, optimizing the understanding of the relationship between the relaxation behaviors and materials, which provides guidance and references for building RC systems coped with on‐demand application scenarios. Furthermore, recent advances in the application of memristor‐based physical RC systems are surveyed. In the end, the further prospects of memristor‐implemented RC system in a material view are envisaged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助坚定的亦绿采纳,获得10
1秒前
1秒前
yu完成签到,获得积分10
1秒前
Chris完成签到,获得积分10
2秒前
cookie发布了新的文献求助10
3秒前
胖仔完成签到,获得积分10
3秒前
Chan0501完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
duxinyue发布了新的文献求助10
5秒前
汉堡转转转完成签到,获得积分10
6秒前
喵酱发布了新的文献求助30
6秒前
6666完成签到,获得积分10
6秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
7秒前
wjn完成签到,获得积分10
7秒前
8秒前
竹子完成签到,获得积分10
8秒前
MAKEYF完成签到 ,获得积分10
8秒前
9秒前
Owen应助猪猪hero采纳,获得10
9秒前
10秒前
CipherSage应助海棠yiyi采纳,获得50
11秒前
Khr1stINK发布了新的文献求助10
11秒前
11秒前
脑洞疼应助卡卡采纳,获得10
11秒前
11秒前
Rrr发布了新的文献求助10
12秒前
科研通AI5应助zmy采纳,获得10
13秒前
William鉴哲发布了新的文献求助10
13秒前
情怀应助只道寻常采纳,获得10
14秒前
14秒前
cyy完成签到,获得积分20
14秒前
orixero应助小庄采纳,获得10
15秒前
16秒前
侦察兵发布了新的文献求助10
16秒前
司徒元瑶完成签到 ,获得积分10
16秒前
梓榆发布了新的文献求助10
16秒前
16秒前
sweetbearm应助通~采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794