Feature Calibrating and Fusing Network for RGB-D Salient Object Detection

人工智能 计算机科学 RGB颜色模型 特征(语言学) 计算机视觉 校准 模式识别(心理学) 数学 语言学 统计 哲学
作者
Qiang Zhang,Qi Qin,Yang Yang,Qiang Jiao,Jungong Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1493-1507 被引量:22
标识
DOI:10.1109/tcsvt.2023.3296581
摘要

Due to their imaging mechanisms and techniques, some depth images inevitably have low visual qualities or have some inconsistent foregrounds with their corresponding RGB images. Directly using such depth images will deteriorate the performance of RGB-D SOD. In view of this, a novel RGB-D salient object detection model is presented, which follows the principle of calibration-then-fusion to effectively suppress the influence of such two types of depth images on final saliency prediction. Specifically, the proposed model is composed of two stages, i.e., an image generation stage and a saliency reasoning stage. The former generates high-quality and foreground-consistent pseudo depth images via an image generation network. While the latter first calibrates the original depth information with the aid of those newly generated pseudo depth images and then performs cross-modal feature fusion for the final saliency reasoning. Especially, in the first stage, a Two-steps Sample Selection (TSS) strategy is employed to select such reliable depth images from the original RGB-D image pairs as supervision information to optimize the image generation network. Afterwards, in the second stage, a Feature Calibrating and Fusing Network (FCFNet) is proposed to achieve the calibration-then-fusion of cross-modal information for the final saliency prediction, which is achieved by a Depth Feature Calibration (DFC) module, a Shallow-level Feature Injection (SFI) module and a Multi-modal Multi-scale Fusion (MMF) module. Moreover, a loss function, i.e., Region Consistency Aware (RCA) loss, is presented as an auxiliary loss for FCFNet to facilitate the completeness of salient objects together with the reduction of background interference by considering the local regional consistency in the saliency maps. Experiments on six benchmark datasets demonstrate the superiorities of our proposed RGB-D SOD model over some state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ding应助SY采纳,获得10
4秒前
传奇3应助xiao白采纳,获得10
4秒前
zhangyu应助环游水星采纳,获得10
6秒前
麦子发布了新的文献求助10
6秒前
7秒前
传奇3应助纳米酶催化采纳,获得10
9秒前
万能图书馆应助明亮安双采纳,获得10
9秒前
10秒前
chris完成签到,获得积分10
10秒前
Connie发布了新的文献求助10
13秒前
Smile发布了新的文献求助10
14秒前
15秒前
XFaning完成签到 ,获得积分20
17秒前
提纳里的尾巴毛完成签到,获得积分10
18秒前
arrebol完成签到,获得积分20
18秒前
18秒前
111发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
gsa7完成签到,获得积分10
20秒前
21秒前
wujiao发布了新的文献求助10
21秒前
21秒前
华仔应助李昕123采纳,获得10
22秒前
23秒前
hengistdeng发布了新的文献求助10
23秒前
arrebol发布了新的文献求助10
24秒前
123456发布了新的文献求助10
25秒前
25秒前
pdx666发布了新的文献求助10
25秒前
李健的小迷弟应助张爱学采纳,获得10
26秒前
FashionBoy应助Smile采纳,获得10
26秒前
孙燕应助pdx666采纳,获得10
28秒前
欢檬应助zy采纳,获得10
31秒前
Lucas应助小次之山采纳,获得10
31秒前
于芋菊完成签到,获得积分0
36秒前
wanci应助祎橘采纳,获得10
36秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629