已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature Calibrating and Fusing Network for RGB-D Salient Object Detection

人工智能 计算机科学 RGB颜色模型 特征(语言学) 计算机视觉 校准 模式识别(心理学) 数学 哲学 统计 语言学
作者
Qiang Zhang,Qi Qin,Yang Yang,Qiang Jiao,Jungong Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1493-1507 被引量:6
标识
DOI:10.1109/tcsvt.2023.3296581
摘要

Due to their imaging mechanisms and techniques, some depth images inevitably have low visual qualities or have some inconsistent foregrounds with their corresponding RGB images. Directly using such depth images will deteriorate the performance of RGB-D SOD. In view of this, a novel RGB-D salient object detection model is presented, which follows the principle of calibration-then-fusion to effectively suppress the influence of such two types of depth images on final saliency prediction. Specifically, the proposed model is composed of two stages, i.e., an image generation stage and a saliency reasoning stage. The former generates high-quality and foreground-consistent pseudo depth images via an image generation network. While the latter first calibrates the original depth information with the aid of those newly generated pseudo depth images and then performs cross-modal feature fusion for the final saliency reasoning. Especially, in the first stage, a Two-steps Sample Selection (TSS) strategy is employed to select such reliable depth images from the original RGB-D image pairs as supervision information to optimize the image generation network. Afterwards, in the second stage, a Feature Calibrating and Fusing Network (FCFNet) is proposed to achieve the calibration-then-fusion of cross-modal information for the final saliency prediction, which is achieved by a Depth Feature Calibration (DFC) module, a Shallow-level Feature Injection (SFI) module and a Multi-modal Multi-scale Fusion (MMF) module. Moreover, a loss function, i.e., Region Consistency Aware (RCA) loss, is presented as an auxiliary loss for FCFNet to facilitate the completeness of salient objects together with the reduction of background interference by considering the local regional consistency in the saliency maps. Experiments on six benchmark datasets demonstrate the superiorities of our proposed RGB-D SOD model over some state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助qazcy采纳,获得200
4秒前
小金星星完成签到 ,获得积分10
6秒前
小凯完成签到 ,获得积分10
7秒前
9秒前
爱静静应助水果兵治武士采纳,获得50
11秒前
chu完成签到,获得积分10
14秒前
简单外绣完成签到,获得积分10
16秒前
传奇3应助欣欣采纳,获得10
17秒前
kai chen完成签到 ,获得积分0
17秒前
24秒前
37秒前
supermaltose完成签到,获得积分10
39秒前
40秒前
zhang完成签到,获得积分20
51秒前
52秒前
Qinghua应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
深情安青应助科研通管家采纳,获得10
53秒前
Qinghua应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
53秒前
年轻的醉冬完成签到 ,获得积分10
55秒前
英俊的铭应助a_jumper采纳,获得10
58秒前
58秒前
liangxiao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ww发布了新的文献求助10
1分钟前
洸彦完成签到 ,获得积分10
1分钟前
DW完成签到,获得积分10
1分钟前
书文混四方完成签到 ,获得积分10
1分钟前
万能图书馆应助zhaowenxian采纳,获得10
1分钟前
啊怪完成签到 ,获得积分10
1分钟前
爆米花应助a_jumper采纳,获得10
1分钟前
风趣的从梦完成签到,获得积分10
1分钟前
Doc完成签到,获得积分10
1分钟前
谢小盟完成签到 ,获得积分10
1分钟前
1分钟前
咩咩羊发布了新的文献求助20
1分钟前
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210961
求助须知:如何正确求助?哪些是违规求助? 2860075
关于积分的说明 8122533
捐赠科研通 2525757
什么是DOI,文献DOI怎么找? 1359539
科研通“疑难数据库(出版商)”最低求助积分说明 643009
邀请新用户注册赠送积分活动 614987