Feature Calibrating and Fusing Network for RGB-D Salient Object Detection

人工智能 计算机科学 RGB颜色模型 特征(语言学) 计算机视觉 校准 模式识别(心理学) 数学 语言学 统计 哲学
作者
Qiang Zhang,Qi Qin,Yang Yang,Qiang Jiao,Jungong Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1493-1507 被引量:13
标识
DOI:10.1109/tcsvt.2023.3296581
摘要

Due to their imaging mechanisms and techniques, some depth images inevitably have low visual qualities or have some inconsistent foregrounds with their corresponding RGB images. Directly using such depth images will deteriorate the performance of RGB-D SOD. In view of this, a novel RGB-D salient object detection model is presented, which follows the principle of calibration-then-fusion to effectively suppress the influence of such two types of depth images on final saliency prediction. Specifically, the proposed model is composed of two stages, i.e., an image generation stage and a saliency reasoning stage. The former generates high-quality and foreground-consistent pseudo depth images via an image generation network. While the latter first calibrates the original depth information with the aid of those newly generated pseudo depth images and then performs cross-modal feature fusion for the final saliency reasoning. Especially, in the first stage, a Two-steps Sample Selection (TSS) strategy is employed to select such reliable depth images from the original RGB-D image pairs as supervision information to optimize the image generation network. Afterwards, in the second stage, a Feature Calibrating and Fusing Network (FCFNet) is proposed to achieve the calibration-then-fusion of cross-modal information for the final saliency prediction, which is achieved by a Depth Feature Calibration (DFC) module, a Shallow-level Feature Injection (SFI) module and a Multi-modal Multi-scale Fusion (MMF) module. Moreover, a loss function, i.e., Region Consistency Aware (RCA) loss, is presented as an auxiliary loss for FCFNet to facilitate the completeness of salient objects together with the reduction of background interference by considering the local regional consistency in the saliency maps. Experiments on six benchmark datasets demonstrate the superiorities of our proposed RGB-D SOD model over some state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
444完成签到,获得积分10
刚刚
任一发布了新的文献求助30
刚刚
莉莉发布了新的文献求助10
1秒前
Zoe发布了新的文献求助10
1秒前
Hover完成签到,获得积分10
1秒前
自然的茉莉完成签到,获得积分10
2秒前
2秒前
Mandy完成签到,获得积分10
2秒前
3秒前
脑洞疼应助qaq采纳,获得10
3秒前
世界尽头发布了新的文献求助10
3秒前
小二郎应助科研民工采纳,获得10
3秒前
4秒前
无奈满天发布了新的文献求助10
4秒前
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
贪玩丸子完成签到,获得积分10
5秒前
神勇的雅香应助liutaili采纳,获得10
6秒前
KSGGS完成签到,获得积分10
6秒前
YANG关注了科研通微信公众号
6秒前
7秒前
7秒前
7秒前
99发布了新的文献求助10
8秒前
8秒前
科研通AI5应助qi采纳,获得10
8秒前
乐乐发布了新的文献求助10
9秒前
铸一字错发布了新的文献求助10
9秒前
受伤书文完成签到,获得积分10
10秒前
Yvonne发布了新的文献求助10
10秒前
10秒前
温柔的十三完成签到,获得积分10
10秒前
Ll发布了新的文献求助10
11秒前
nikai发布了新的文献求助10
11秒前
圣晟胜发布了新的文献求助10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759