Deep Reinforcement Learning Based on Parked Vehicles-Assisted for Task Offloading in Vehicle Edge Computing

强化学习 计算机科学 趋同(经济学) 人工智能 任务(项目管理) 人工神经网络 增强学习 功能(生物学) GSM演进的增强数据速率 深度学习 边缘计算 表(数据库) 函数逼近 算法 工程类 系统工程 进化生物学 数据挖掘 经济 生物 经济增长
作者
Bingxin Wang,Lei Liu,Jie Wang
标识
DOI:10.1109/iwcmc58020.2023.10183330
摘要

Vehicles may produce a lot of data that is timesensitive and computationally intensive due to the quick development of on-board applications. Due to the limitation of vehicle computing power and battery capacity, these data cannot be processed in time. Vehicle edge computing (VEC) is increasingly used to solve this problem because of its greater computing power. This paper proposes a VEC task offloading model based on improved Q-learning algorithm. First of all, we establish the system model. Due to the complexity of the system model environment, we adopted the reinforcement learning (RL) algorithm, but the environment space and action space in RL are large, which will lead to slow convergence of the model. We combine RL and deep learning (DL) to increase convergence efficiency, and to convert the task of maintaining the value function table, we utilize deep reinforcement learning (DRL) by training a neural network model. The revised Q-learning algorithm's solving procedure is then thoroughly introduced. The simulation outcomes demonstrate that as training times are increased, the training loss of the enhanced Q-learning algorithm gradually declines and tends to converge to zero. It has been confirmed that our suggested approach does a goodjob of evaluating the system cost. As the number of vehicles on the route increases, the system experiences an increase in time cost. We also compare the traditional Q-learning algorithm to the improved Q-learning strategy. The simulation results show that the enhanced Q-learning algorithm is much faster than the conventional Q-learning method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊丽莎白完成签到 ,获得积分10
刚刚
俊逸的石头完成签到,获得积分10
1秒前
1秒前
kyou完成签到,获得积分10
2秒前
3秒前
喻鞅完成签到,获得积分10
3秒前
3秒前
血管垢发布了新的文献求助10
4秒前
4秒前
FashionBoy应助含蓄海白采纳,获得10
5秒前
拾新完成签到,获得积分10
5秒前
Dreams发布了新的文献求助10
5秒前
5秒前
左肩微笑完成签到,获得积分10
5秒前
科研通AI5应助bean采纳,获得10
5秒前
6秒前
7秒前
55666发布了新的文献求助10
7秒前
7秒前
Owen应助wang5945采纳,获得10
7秒前
上官若男应助wrh采纳,获得10
8秒前
8秒前
丘比特应助嘴嘴是大嘴007采纳,获得10
9秒前
9秒前
9秒前
10秒前
hileborn完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
LYF000666完成签到 ,获得积分10
10秒前
jinhai发布了新的文献求助10
11秒前
qingzi关注了科研通微信公众号
11秒前
Hermione发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助wuwei采纳,获得10
13秒前
13秒前
小顾小顾发布了新的文献求助30
13秒前
维尼完成签到,获得积分10
14秒前
戴衡霞发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233