Advanced modeling and optimizing for surface sterilization process of grape vine (Vitis vinifera) root stock 3309C through response surface, artificial neural network, and genetic algorithm techniques

外植体培养 响应面法 灭菌(经济) 人工神经网络 生物系统 人工智能 机器学习 生物技术 计算机科学 数学 生物 体外 经济 货币经济学 外汇市场 外汇 生物化学
作者
Habtamu Dagne,Venkatesa Prabhu S,P. Hemalatha,Alazar Yeshitila,Solomon Benor,Solomon Abera,Adugna Abdi Woldesemayat
出处
期刊:Heliyon [Elsevier]
卷期号:9 (8): e18628-e18628 被引量:3
标识
DOI:10.1016/j.heliyon.2023.e18628
摘要

In vitro, sterilization is one of the key components for proceeding with plant tissue cultures. Since the effectiveness of sterilization has a direct impact on the culture's final outcomes, there is a crucial need for optimization of the sterilization process. However, compared with traditional optimizing methods, the use of computational approaches through artificial intelligence-based process modeling and optimization algorithms provides a precise optimal condition for in vitro culturing. This study aimed to optimise in vitro sterilization of grape rootstock 3309C using RSM, ANN, and genetic algorithm (GA) techniques. In this context, two output responses, namely, Clean Culture and Explant Viability, were optimised using the models developed by RSM and ANN, followed by a GA, to obtain a globally optimal solution. The most influential independent factors, such as HgCl2, NaOCl, AgNO3, and immersion time, were considered input variables. The significance of the developed models was investigated with statistical and non-statistical techniques and was optimised to determine the significance of selected inputs. The optimal clean culture of 91%, and the explant viability of 89% can be obtained from 1.62% NaOCl at a 13.96 min immersion time, according to MLP-NSGAII. Sensitivity analysis revealed that the clean culture and explant viability were less sensitive to AgNO3 and more sensitive to immersion time. Results showed that the differences between the GA predicted and validation data were significant after the performance validation of predicted and optimised sterilising agents with immersion time combinations were tested. In general, GA, a potent methodology, may open the door to the development of new computational methods in plant tissue culture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小于爱科研完成签到,获得积分10
刚刚
PEKOEA完成签到,获得积分20
1秒前
共享精神应助zls采纳,获得10
2秒前
Lv完成签到,获得积分10
3秒前
bingrui发布了新的文献求助10
4秒前
4秒前
BINGBING1230发布了新的文献求助10
5秒前
8秒前
chen完成签到,获得积分10
8秒前
sci2025opt完成签到 ,获得积分10
9秒前
12秒前
慕青应助高高很厉害采纳,获得10
12秒前
13秒前
小二郎应助淡淡听安采纳,获得10
15秒前
15秒前
比巴卜溪完成签到,获得积分20
15秒前
16秒前
bingrui完成签到,获得积分10
16秒前
漂亮娃娃完成签到,获得积分20
17秒前
科研完成签到,获得积分10
17秒前
zls发布了新的文献求助10
21秒前
内科应助无心的尔琴采纳,获得20
21秒前
22秒前
lr关闭了lr文献求助
24秒前
24秒前
26秒前
dragon完成签到 ,获得积分10
26秒前
lalala应助black_cavalry采纳,获得10
27秒前
27秒前
无限问寒发布了新的文献求助20
27秒前
赵卫星发布了新的文献求助10
27秒前
陈乃雪发布了新的文献求助10
28秒前
qbhkai发布了新的文献求助20
29秒前
水果完成签到 ,获得积分10
29秒前
30秒前
赵卫星完成签到,获得积分20
35秒前
水果发布了新的文献求助10
35秒前
36秒前
浮游应助w123采纳,获得20
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298783
求助须知:如何正确求助?哪些是违规求助? 4447268
关于积分的说明 13841970
捐赠科研通 4332744
什么是DOI,文献DOI怎么找? 2378323
邀请新用户注册赠送积分活动 1373613
关于科研通互助平台的介绍 1339188