Advanced modeling and optimizing for surface sterilization process of grape vine (Vitis vinifera) root stock 3309C through response surface, artificial neural network, and genetic algorithm techniques

外植体培养 响应面法 灭菌(经济) 人工神经网络 生物系统 人工智能 机器学习 生物技术 计算机科学 数学 生物 体外 经济 货币经济学 外汇市场 外汇 生物化学
作者
Habtamu Dagne,Venkatesa Prabhu S,P. Hemalatha,Alazar Yeshitila,Solomon Benor,Solomon Abera,Adugna Abdi Woldesemayat
出处
期刊:Heliyon [Elsevier]
卷期号:9 (8): e18628-e18628 被引量:3
标识
DOI:10.1016/j.heliyon.2023.e18628
摘要

In vitro, sterilization is one of the key components for proceeding with plant tissue cultures. Since the effectiveness of sterilization has a direct impact on the culture's final outcomes, there is a crucial need for optimization of the sterilization process. However, compared with traditional optimizing methods, the use of computational approaches through artificial intelligence-based process modeling and optimization algorithms provides a precise optimal condition for in vitro culturing. This study aimed to optimise in vitro sterilization of grape rootstock 3309C using RSM, ANN, and genetic algorithm (GA) techniques. In this context, two output responses, namely, Clean Culture and Explant Viability, were optimised using the models developed by RSM and ANN, followed by a GA, to obtain a globally optimal solution. The most influential independent factors, such as HgCl2, NaOCl, AgNO3, and immersion time, were considered input variables. The significance of the developed models was investigated with statistical and non-statistical techniques and was optimised to determine the significance of selected inputs. The optimal clean culture of 91%, and the explant viability of 89% can be obtained from 1.62% NaOCl at a 13.96 min immersion time, according to MLP-NSGAII. Sensitivity analysis revealed that the clean culture and explant viability were less sensitive to AgNO3 and more sensitive to immersion time. Results showed that the differences between the GA predicted and validation data were significant after the performance validation of predicted and optimised sterilising agents with immersion time combinations were tested. In general, GA, a potent methodology, may open the door to the development of new computational methods in plant tissue culture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
www发布了新的文献求助10
1秒前
Lucas应助泛泛之交采纳,获得10
1秒前
Dante完成签到,获得积分10
1秒前
Jjj发布了新的文献求助10
2秒前
直率的雁芙完成签到,获得积分20
2秒前
Neo完成签到,获得积分10
2秒前
2秒前
赘婿应助kkkkkkk_采纳,获得10
3秒前
巧克力脏脏包完成签到,获得积分10
3秒前
洁净之柔完成签到,获得积分10
3秒前
shi0331完成签到,获得积分10
3秒前
3秒前
冷静凌文完成签到 ,获得积分10
4秒前
的的的完成签到,获得积分20
4秒前
Easton完成签到,获得积分10
5秒前
聪明可爱小绘理完成签到,获得积分10
5秒前
yellow完成签到,获得积分20
6秒前
123456完成签到,获得积分10
7秒前
Fngz3完成签到,获得积分10
7秒前
迪丽盐巴完成签到,获得积分10
7秒前
韆木完成签到,获得积分10
7秒前
FashionBoy应助漠之梦采纳,获得10
7秒前
当当完成签到,获得积分10
8秒前
9秒前
SciGPT应助www采纳,获得10
9秒前
FashionBoy应助Jjj采纳,获得10
10秒前
韆木发布了新的文献求助10
10秒前
10秒前
hkh发布了新的文献求助10
11秒前
12秒前
若冰完成签到,获得积分10
12秒前
12秒前
黄黄完成签到,获得积分10
13秒前
研友_8DAv0L发布了新的文献求助10
14秒前
14秒前
sixone完成签到,获得积分10
14秒前
四海发布了新的文献求助10
15秒前
lq完成签到,获得积分10
15秒前
15秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121903
求助须知:如何正确求助?哪些是违规求助? 2772268
关于积分的说明 7712601
捐赠科研通 2427697
什么是DOI,文献DOI怎么找? 1289453
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169