已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictive control of linear discrete-time Markovian jump systems by learning recurrent patterns

控制理论(社会学) 模型预测控制 跳跃 马尔可夫过程 离散时间和连续时间 控制(管理) 计算机科学 数学 人工智能 物理 统计 量子力学
作者
SooJean Han,Soon‐Jo Chung,John C. Doyle
出处
期刊:Automatica [Elsevier]
卷期号:156: 111197-111197
标识
DOI:10.1016/j.automatica.2023.111197
摘要

Incorporating pattern-learning for prediction (PLP) in many discrete-time or discrete-event systems allows for computation-efficient controller design by memorizing patterns to schedule control policies based on their future occurrences. In this paper, we demonstrate the effect of PLP by designing a controller architecture for a class of linear Markovian jump systems (MJSs) where the aforementioned "patterns" correspond to finite-length sequences of modes. In our analysis of recurrent patterns, we use martingale theory to derive closed-form solutions to quantities pertaining to the occurrence of patterns: (1) the expected minimum occurrence time of any pattern from some predefined collection, (2) the probability of a pattern being the first to occur among the collection. To make our method applicable to real-world dynamics, we make two extensions to common assumptions in prior pattern-occurrence literature. First, the distribution of the mode process is unknown, and second, the true realization of the mode process is not observable. As demonstration, we consider fault-tolerant control of a dynamic topology-switching network, and empirically compare PLP to two controllers without PLP: a baseline based on the novel System Level Synthesis (SLS) approach and a topology-robust extension of the SLS baseline. We show that PLP is able to reject disturbances just as effectively as the topology-robust controller at reduced computation time and control effort. We discuss several important tradeoffs, such as the size of the pattern collection and the system scale versus the accuracy of the mode predictions, which show how different PLP implementations affect stabilization and runtime performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助茜茜采纳,获得10
1秒前
充电宝应助安诺采纳,获得10
1秒前
无花果应助李特猪猪仔采纳,获得10
2秒前
灵巧坤发布了新的文献求助10
3秒前
Uranus发布了新的文献求助10
5秒前
freedom发布了新的文献求助10
6秒前
wanci应助林林林采纳,获得10
6秒前
小宋今天要更努力完成签到 ,获得积分10
9秒前
追梦人完成签到 ,获得积分10
10秒前
wlmqljj完成签到,获得积分10
14秒前
15秒前
15秒前
18秒前
CipherSage应助BOOMKING采纳,获得10
18秒前
科研通AI6.1应助lirongcas采纳,获得10
18秒前
19秒前
19秒前
21秒前
21秒前
21秒前
无花果应助黄奥龙采纳,获得10
22秒前
24秒前
海棠完成签到 ,获得积分10
24秒前
林林林发布了新的文献求助10
25秒前
xyj完成签到,获得积分20
25秒前
26秒前
27秒前
HMG1COA完成签到 ,获得积分10
27秒前
Uranus完成签到,获得积分10
27秒前
28秒前
28秒前
Simms完成签到 ,获得积分10
29秒前
30秒前
123发布了新的文献求助10
30秒前
30秒前
李健应助林林林采纳,获得10
31秒前
31秒前
辣手摧花反派大掌柜完成签到 ,获得积分10
33秒前
sys完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5815028
求助须知:如何正确求助?哪些是违规求助? 5922606
关于积分的说明 15541962
捐赠科研通 4937786
什么是DOI,文献DOI怎么找? 2659323
邀请新用户注册赠送积分活动 1605652
关于科研通互助平台的介绍 1560203