光降解
罗丹明B
异质结
光催化
降级(电信)
材料科学
亚甲蓝
光化学
毒性
密度泛函理论
化学工程
化学
催化作用
计算化学
光电子学
有机化学
工程类
电信
计算机科学
作者
Qian Chen,Shunyan Ning,Jingren Yang,Longfei Wang,Xiangbiao Yin,Xinpeng Wang,Yuezhou Wei,Deqian Zeng
出处
期刊:Small
[Wiley]
日期:2023-12-06
被引量:4
标识
DOI:10.1002/smll.202307304
摘要
Abstract The construction of heterojunction photocatalysts is an auspicious approach for enhancing the photocatalytic performance of wastewater treatment. Here, a novel CeO 2 /Bi 2 WO 6 heterojunction is synthesized using an in situ liquid‐phase method. The optimal 15% CeO 2 /Bi 2 WO 6 (CBW‐15) is found to have the highest photocatalytic activity, achieving a degradation efficiency of 99.21% for tetracycline (TC), 98.43% for Rhodamine B (RhB), and 94.03% for methylene blue (MB). The TC removal rate remained at 95.38% even after five cycles. Through active species capture experiments, •O 2 − , h + , and •OH are the main active substances for TC, RhB, and MB, respectively. The possible degradation pathways for TC are analyzed using liquid chromatography‐mass spectrometry (LC‐MS). The photoinduced charge transfer and possible degradation mechanisms are proposed through experimentation and density functional theory (DFT) calculations. Toxicity assessment experiments show a significant reduction in toxicity during the TC degradation process. This study uncovers the mechanism of photocatalytic degradation in CeO 2 /Bi 2 WO 6 and provides new insights into toxicity assessment.
科研通智能强力驱动
Strongly Powered by AbleSci AI