In Situ Interfacial Engineering of CeO2/Bi2WO6 Heterojunction with Improved Photodegradation of Tetracycline and Organic Dyes: Mechanism Insight and Toxicity Assessment
Abstract The construction of heterojunction photocatalysts is an auspicious approach for enhancing the photocatalytic performance of wastewater treatment. Here, a novel CeO 2 /Bi 2 WO 6 heterojunction is synthesized using an in situ liquid‐phase method. The optimal 15% CeO 2 /Bi 2 WO 6 (CBW‐15) is found to have the highest photocatalytic activity, achieving a degradation efficiency of 99.21% for tetracycline (TC), 98.43% for Rhodamine B (RhB), and 94.03% for methylene blue (MB). The TC removal rate remained at 95.38% even after five cycles. Through active species capture experiments, •O 2 − , h + , and •OH are the main active substances for TC, RhB, and MB, respectively. The possible degradation pathways for TC are analyzed using liquid chromatography‐mass spectrometry (LC‐MS). The photoinduced charge transfer and possible degradation mechanisms are proposed through experimentation and density functional theory (DFT) calculations. Toxicity assessment experiments show a significant reduction in toxicity during the TC degradation process. This study uncovers the mechanism of photocatalytic degradation in CeO 2 /Bi 2 WO 6 and provides new insights into toxicity assessment.