Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study

卵巢癌 接收机工作特性 医学 回顾性队列研究 队列 癌症 肿瘤科 内科学 人工智能 机器学习 计算机科学
作者
Guangyao Cai,Fangjun Huang,Yue Gao,Xiao Li,Jianhua Chi,Jincheng Xie,Linghong Zhou,Yanling Feng,He Huang,Ting Deng,Yun Zhou,Qian Zhang,Xiaolin Luo,Xing Xie,Qinglei Gao,Xin Zhen,Jihong Liu
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (3): e176-e186 被引量:6
标识
DOI:10.1016/s2589-7500(23)00245-5
摘要

Summary

Background

Ovarian cancer is the most lethal gynecological malignancy. Timely diagnosis of ovarian cancer is difficult due to the lack of effective biomarkers. Laboratory tests are widely applied in clinical practice, and some have shown diagnostic and prognostic relevance to ovarian cancer. We aimed to systematically evaluate the value of routine laboratory tests on the prediction of ovarian cancer, and develop a robust and generalisable ensemble artificial intelligence (AI) model to assist in identifying patients with ovarian cancer.

Methods

In this multicentre, retrospective cohort study, we collected 98 laboratory tests and clinical features of women with or without ovarian cancer admitted to three hospitals in China during Jan 1, 2012 and April 4, 2021. A multi-criteria decision making-based classification fusion (MCF) risk prediction framework was used to make a model that combined estimations from 20 AI classification models to reach an integrated prediction tool developed for ovarian cancer diagnosis. It was evaluated on an internal validation set (3007 individuals) and two external validation sets (5641 and 2344 individuals). The primary outcome was the prediction accuracy of the model in identifying ovarian cancer.

Findings

Based on 52 features (51 laboratory tests and age), the MCF achieved an area under the receiver-operating characteristic curve (AUC) of 0·949 (95% CI 0·948–0·950) in the internal validation set, and AUCs of 0·882 (0·880–0·885) and 0·884 (0·882–0·887) in the two external validation sets. The model showed higher AUC and sensitivity compared with CA125 and HE4 in identifying ovarian cancer, especially in patients with early-stage ovarian cancer. The MCF also yielded acceptable prediction accuracy with the exclusion of highly ranked laboratory tests that indicate ovarian cancer, such as CA125 and other tumour markers, and outperformed state-of-the-art models in ovarian cancer prediction. The MCF was wrapped as an ovarian cancer prediction tool, and made publicly available to provide estimated probability of ovarian cancer with input laboratory test values.

Interpretation

The MCF model consistently achieved satisfactory performance in ovarian cancer prediction when using laboratory tests from the three validation sets. This model offers a low-cost, easily accessible, and accurate diagnostic tool for ovarian cancer. The included laboratory tests, not only CA125 which was the highest ranked laboratory test in importance of diagnostic assistance, contributed to the characterisation of patients with ovarian cancer.

Funding

Ministry of Science and Technology of China; National Natural Science Foundation of China; Natural Science Foundation of Guangdong Province, China; and Science and Technology Project of Guangzhou, China.

Translation

For the Chinese translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助失眠剑采纳,获得10
1秒前
1秒前
1秒前
小毛驴发布了新的文献求助10
2秒前
白白白完成签到 ,获得积分10
2秒前
科研12345完成签到,获得积分20
3秒前
豆豆应助芮rich采纳,获得10
4秒前
丘比特应助dolphin采纳,获得10
4秒前
5秒前
甜味拾荒者完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
han完成签到 ,获得积分10
8秒前
8秒前
wangzheng发布了新的文献求助10
11秒前
11秒前
liu关闭了liu文献求助
11秒前
11秒前
wsqg123发布了新的文献求助10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得30
12秒前
大模型应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
鹿飞松应助科研通管家采纳,获得20
12秒前
13秒前
15秒前
慕青应助子小孙采纳,获得10
15秒前
鹤丸子发布了新的文献求助10
16秒前
cheese发布了新的文献求助10
16秒前
科研通AI2S应助cy0824采纳,获得30
16秒前
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870