Feature Matching via Topology-Aware Graph Interaction Model

计算机科学 离群值 成对比较 匹配(统计) 图形 算法 理论计算机科学 拓扑(电路) 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 数学 语言学 统计 哲学 组合数学
作者
Yifan Lu,Jiayi Ma,Xiaoguang Mei,Jun Huang,Xiao-Ping Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 113-130
标识
DOI:10.1109/jas.2023.123774
摘要

Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers. This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model, is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous locality-based method without noticeable deterioration in processing time, adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching (TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
希望天下0贩的0应助jw采纳,获得10
刚刚
NexusExplorer应助wodetaiyangLLL采纳,获得10
刚刚
kenny2023发布了新的文献求助10
刚刚
Smar_zcl应助土豆很好吃采纳,获得20
1秒前
无芒发布了新的文献求助10
1秒前
Meiyu发布了新的文献求助10
2秒前
wrx发布了新的文献求助10
2秒前
Demon发布了新的文献求助10
2秒前
2秒前
体验发布了新的文献求助10
2秒前
lynn016完成签到,获得积分10
3秒前
Xx发布了新的文献求助10
3秒前
孙红完成签到,获得积分10
3秒前
3秒前
wangmanli发布了新的文献求助30
4秒前
大模型应助茶茶采纳,获得10
4秒前
ChenxiPan发布了新的文献求助10
4秒前
英俊的铭应助蓝天0812采纳,获得10
6秒前
SJD完成签到,获得积分0
6秒前
7秒前
一一发布了新的文献求助10
8秒前
9秒前
All_fly应助LT采纳,获得10
9秒前
Ysk完成签到,获得积分10
9秒前
SciGPT应助胡子西瓜采纳,获得10
9秒前
Why顺利完成签到,获得积分10
10秒前
11秒前
11秒前
Ava应助无芒采纳,获得10
11秒前
11秒前
学术垃圾完成签到,获得积分10
12秒前
Lucas应助染小七采纳,获得10
12秒前
yzhilson完成签到 ,获得积分0
13秒前
淡然鸡翅完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
jw发布了新的文献求助10
15秒前
柏文鸽完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351368
求助须知:如何正确求助?哪些是违规求助? 4484455
关于积分的说明 13959104
捐赠科研通 4383984
什么是DOI,文献DOI怎么找? 2408721
邀请新用户注册赠送积分活动 1401290
关于科研通互助平台的介绍 1374800