Feature Matching via Topology-Aware Graph Interaction Model

计算机科学 离群值 成对比较 匹配(统计) 图形 算法 理论计算机科学 拓扑(电路) 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 数学 语言学 统计 哲学 组合数学
作者
Yifan Lu,Jiayi Ma,Xiaoguang Mei,Jun Huang,Xiao-Ping Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 113-130
标识
DOI:10.1109/jas.2023.123774
摘要

Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers. This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model, is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous locality-based method without noticeable deterioration in processing time, adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching (TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋若风发布了新的文献求助10
刚刚
buno应助张益发采纳,获得10
刚刚
1秒前
LQQ发布了新的文献求助10
1秒前
轻歌水越发布了新的文献求助10
1秒前
1秒前
Owen应助怕孤独的迎梦采纳,获得10
1秒前
霖尤发布了新的文献求助20
2秒前
2秒前
遇见完成签到,获得积分20
2秒前
尼古拉斯发布了新的文献求助10
3秒前
3秒前
在水一方应助HCT采纳,获得10
4秒前
hhl完成签到,获得积分10
4秒前
4秒前
Eukarya完成签到,获得积分10
4秒前
勿忘9451发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
清脆苑博发布了新的文献求助10
6秒前
xuxuux完成签到,获得积分10
6秒前
7秒前
cc发布了新的文献求助10
7秒前
7秒前
ceeray23应助薄荷喵采纳,获得10
7秒前
在水一方应助小宇采纳,获得10
8秒前
4149发布了新的文献求助10
8秒前
8秒前
9秒前
无极微光应助123456采纳,获得20
10秒前
夕寸发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
英姑应助七点半采纳,获得10
11秒前
LYP发布了新的文献求助10
11秒前
11秒前
充电宝应助星星采纳,获得10
11秒前
刘海婷完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836