Feature Matching via Topology-Aware Graph Interaction Model

计算机科学 离群值 成对比较 匹配(统计) 图形 算法 理论计算机科学 拓扑(电路) 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 数学 语言学 统计 哲学 组合数学
作者
Yifan Lu,Jiayi Ma,Xiaoguang Mei,Jun Huang,Xiao-Ping Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 113-130
标识
DOI:10.1109/jas.2023.123774
摘要

Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers. This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model, is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous locality-based method without noticeable deterioration in processing time, adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching (TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活泼听双发布了新的文献求助20
刚刚
刚刚
1秒前
核潜艇很优秀应助嘻嘻采纳,获得30
1秒前
大勺完成签到 ,获得积分10
2秒前
明理的凡霜完成签到,获得积分10
2秒前
sqb完成签到,获得积分10
3秒前
曾经曼梅发布了新的文献求助10
3秒前
3秒前
无极微光应助瘦瘦采纳,获得20
3秒前
连长发布了新的文献求助10
3秒前
Pooh发布了新的文献求助10
3秒前
LYDZ2发布了新的文献求助10
3秒前
4秒前
4秒前
啊棕完成签到,获得积分10
5秒前
SciGPT应助Ttttt采纳,获得10
5秒前
6秒前
dudu完成签到,获得积分10
7秒前
8秒前
无极微光应助婷123采纳,获得20
9秒前
9秒前
多情的奄完成签到,获得积分10
9秒前
情怀应助小乙大夫采纳,获得10
9秒前
Jinnnnn发布了新的文献求助10
9秒前
满天星完成签到,获得积分10
10秒前
TingtingGZ发布了新的文献求助10
11秒前
清河聂氏发布了新的文献求助10
11秒前
pluto应助曾经曼梅采纳,获得10
11秒前
12秒前
丘比特应助自由的尔蓉采纳,获得10
12秒前
孙子豪完成签到,获得积分10
12秒前
13秒前
852应助Lchemistry采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
星辰大海应助动听的寻芹采纳,获得10
13秒前
14秒前
顾矜应助小佳同学采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006