Feature Matching via Topology-Aware Graph Interaction Model

计算机科学 离群值 成对比较 匹配(统计) 图形 算法 理论计算机科学 拓扑(电路) 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 数学 语言学 统计 哲学 组合数学
作者
Yifan Lu,Jiayi Ma,Xiaoguang Mei,Jun Huang,Xiao-Ping Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 113-130
标识
DOI:10.1109/jas.2023.123774
摘要

Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers. This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model, is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous locality-based method without noticeable deterioration in processing time, adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching (TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mickiller发布了新的文献求助10
刚刚
绫小路绫发布了新的文献求助10
刚刚
luxian完成签到,获得积分10
1秒前
虚妄完成签到,获得积分10
1秒前
Peter关注了科研通微信公众号
1秒前
1秒前
浅色凉生发布了新的文献求助10
1秒前
2秒前
彭于晏应助青蔚采纳,获得10
2秒前
2秒前
富贵完成签到,获得积分10
2秒前
2秒前
2秒前
bkagyin应助天成采纳,获得10
2秒前
内向的白玉完成签到 ,获得积分10
2秒前
简单白梦发布了新的文献求助10
2秒前
2秒前
2秒前
JINGYIII发布了新的文献求助10
3秒前
3秒前
TYT驳回了慕青应助
3秒前
舒服的曼云完成签到,获得积分10
4秒前
4秒前
elf完成签到,获得积分20
4秒前
4秒前
李健的小迷弟应助111版采纳,获得30
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
华仔应助淡淡元容采纳,获得10
6秒前
SciGPT应助爱睡觉采纳,获得10
6秒前
lemon发布了新的文献求助10
6秒前
6秒前
深夜诗人发布了新的文献求助10
7秒前
姚怜南发布了新的文献求助10
7秒前
儒雅老太发布了新的文献求助10
7秒前
曾金福完成签到,获得积分10
9秒前
zoe完成签到,获得积分10
9秒前
WSS发布了新的文献求助10
9秒前
萌酱发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001275
求助须知:如何正确求助?哪些是违规求助? 4246504
关于积分的说明 13229609
捐赠科研通 4045157
什么是DOI,文献DOI怎么找? 2212990
邀请新用户注册赠送积分活动 1223162
关于科研通互助平台的介绍 1143474