Feature Matching via Topology-Aware Graph Interaction Model

计算机科学 离群值 成对比较 匹配(统计) 图形 算法 理论计算机科学 拓扑(电路) 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 数学 语言学 统计 哲学 组合数学
作者
Yifan Lu,Jiayi Ma,Xiaoguang Mei,Jun Huang,Xiao-Ping Zhang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 113-130
标识
DOI:10.1109/jas.2023.123774
摘要

Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers. This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model, is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous locality-based method without noticeable deterioration in processing time, adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching (TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
zzz发布了新的文献求助30
刚刚
慕青应助科研通管家采纳,获得10
刚刚
LewisAcid应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
LewisAcid应助科研通管家采纳,获得10
1秒前
zky发布了新的文献求助10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
皇甫成发布了新的文献求助10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
小蘑菇应助Onechch采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
蘑菇发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095