High‐Performance Hydrogel Sensors Enabled Multimodal and Accurate Human–Machine Interaction System for Active Rehabilitation

计算机科学 手势 接口(物质) 共形矩阵 机器人学 人工智能 人机交互 机器人 人机交互 模拟 材料科学 最大气泡压力法 气泡 复合材料 并行计算
作者
Hao Wang,Qiongling Ding,Yibing Luo,Zixuan Wu,Jiahao Yu,Huizhi Chen,Yubin Zhou,He Zhang,Kai Tao,Xiaoliang Chen,Jun Fu,Jin Wu
出处
期刊:Advanced Materials [Wiley]
被引量:48
标识
DOI:10.1002/adma.202309868
摘要

Abstract Human–machine interaction (HMI) technology shows an important application prospect in rehabilitation medicine, but it is greatly limited by the unsatisfactory recognition accuracy and wearing comfort. Here, this work develops a fully flexible, conformable, and functionalized multimodal HMI interface consisting of hydrogel‐based sensors and a self‐designed flexible printed circuit board. Thanks to the component regulation and structural design of the hydrogel, both electromyogram (EMG) and forcemyography (FMG) signals can be collected accurately and stably, so that they are later decoded with the assistance of artificial intelligence (AI). Compared with traditional multichannel EMG signals, the multimodal human–machine interaction method based on the combination of EMG and FMG signals significantly improves the efficiency of human–machine interaction by increasing the information entropy of the interaction signals. The decoding accuracy of the interaction signals from only two channels for different gestures reaches 91.28%. The resulting AI‐powered active rehabilitation system can control a pneumatic robotic glove to assist stroke patients in completing movements according to the recognized human motion intention. Moreover, this HMI interface is further generalized and applied to other remote sensing platforms, such as manipulators, intelligent cars, and drones, paving the way for the design of future intelligent robot systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱猫的纭发布了新的文献求助10
刚刚
3秒前
4秒前
冷静的豪发布了新的文献求助10
5秒前
orixero应助彩色的芷容采纳,获得10
5秒前
橴暘完成签到,获得积分10
7秒前
华仔应助木忻采纳,获得10
7秒前
7秒前
陈雨欣发布了新的文献求助10
8秒前
快乐科研完成签到 ,获得积分10
8秒前
小马甲应助合适依秋采纳,获得10
9秒前
10秒前
研友_8K29bZ发布了新的文献求助10
12秒前
jihui发布了新的文献求助10
13秒前
Orange应助认真的裙子采纳,获得10
14秒前
jio大洁发布了新的文献求助10
14秒前
14秒前
吧噗完成签到,获得积分20
15秒前
16秒前
16秒前
Owen应助轻微采纳,获得10
20秒前
20秒前
21秒前
21秒前
合适依秋发布了新的文献求助10
22秒前
小加完成签到,获得积分10
23秒前
文献狂人发布了新的文献求助10
23秒前
23秒前
JamesPei应助科研通管家采纳,获得10
24秒前
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
Shirley应助科研通管家采纳,获得10
24秒前
Maestro_S应助科研通管家采纳,获得20
24秒前
1640应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
Maestro_S应助科研通管家采纳,获得20
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
行隐应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
薰硝壤应助科研通管家采纳,获得50
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141042
求助须知:如何正确求助?哪些是违规求助? 2791997
关于积分的说明 7801347
捐赠科研通 2448241
什么是DOI,文献DOI怎么找? 1302480
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226