High‐Performance Hydrogel Sensors Enabled Multimodal and Accurate Human–Machine Interaction System for Active Rehabilitation

计算机科学 手势 接口(物质) 共形矩阵 机器人学 人工智能 人机交互 机器人 人机交互 模拟 材料科学 最大气泡压力法 气泡 复合材料 并行计算
作者
Hao Wang,Qiongling Ding,Yibing Luo,Zixuan Wu,Jiahao Yu,Huizhi Chen,Yubin Zhou,He Zhang,Kai Tao,Xiaoliang Chen,Jun Fu,Jin Wu
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (11) 被引量:78
标识
DOI:10.1002/adma.202309868
摘要

Human-machine interaction (HMI) technology shows an important application prospect in rehabilitation medicine, but it is greatly limited by the unsatisfactory recognition accuracy and wearing comfort. Here, this work develops a fully flexible, conformable, and functionalized multimodal HMI interface consisting of hydrogel-based sensors and a self-designed flexible printed circuit board. Thanks to the component regulation and structural design of the hydrogel, both electromyogram (EMG) and forcemyography (FMG) signals can be collected accurately and stably, so that they are later decoded with the assistance of artificial intelligence (AI). Compared with traditional multichannel EMG signals, the multimodal human-machine interaction method based on the combination of EMG and FMG signals significantly improves the efficiency of human-machine interaction by increasing the information entropy of the interaction signals. The decoding accuracy of the interaction signals from only two channels for different gestures reaches 91.28%. The resulting AI-powered active rehabilitation system can control a pneumatic robotic glove to assist stroke patients in completing movements according to the recognized human motion intention. Moreover, this HMI interface is further generalized and applied to other remote sensing platforms, such as manipulators, intelligent cars, and drones, paving the way for the design of future intelligent robot systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Elaine完成签到,获得积分10
刚刚
h41692011完成签到 ,获得积分10
刚刚
斯文败类应助圆圆采纳,获得30
1秒前
李健的小迷弟应助7777777采纳,获得10
1秒前
涛浪驳回了田様应助
1秒前
1秒前
1秒前
2秒前
2秒前
个木发布了新的文献求助10
2秒前
上官若男应助SY采纳,获得10
3秒前
不易BY完成签到,获得积分10
3秒前
ee关闭了ee文献求助
3秒前
Ysh完成签到,获得积分20
3秒前
拼搏念蕾完成签到 ,获得积分10
3秒前
一页完成签到,获得积分10
4秒前
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
4秒前
科研通AI2S应助VDC采纳,获得10
4秒前
wwt发布了新的文献求助10
4秒前
务实大船完成签到,获得积分10
5秒前
蜗牛撵大象完成签到,获得积分10
5秒前
6秒前
sun发布了新的文献求助10
6秒前
6秒前
二二二发布了新的文献求助10
7秒前
开心的傲安完成签到,获得积分20
7秒前
麻麻完成签到,获得积分20
7秒前
DDTT完成签到,获得积分10
8秒前
霸气的念云完成签到,获得积分10
8秒前
Orange应助欢呼小蚂蚁采纳,获得10
8秒前
8秒前
SQ完成签到,获得积分10
9秒前
9秒前
飞跃海龙完成签到 ,获得积分10
9秒前
ufuon发布了新的文献求助10
10秒前
momo完成签到,获得积分10
11秒前
赘婿应助二二二采纳,获得10
11秒前
JamesPei应助HongJiang采纳,获得10
11秒前
clarkq完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678