锂(药物)
焊剂(冶金)
空隙(复合材料)
材料科学
离子
固态
化学工程
电镀(地质)
无机化学
化学
复合材料
冶金
物理化学
有机化学
物理
医学
地球物理学
工程类
内分泌学
作者
Dong Jae Shin,Jinkwan Jung,Youngil Roh,Changhoon Park,Il Ju Kim,Hyeokjin Kwon,Jaewon Baek,Won-Sik Oh,Jun-Hyuk Kim,Seoyoung Jeong,Jaemin Hwang,Yesom Kim,Duk Hyoung Yoon,Hee‐Tak Kim
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2024-02-19
卷期号:9 (3): 1035-1042
被引量:3
标识
DOI:10.1021/acsenergylett.4c00297
摘要
All-solid-state batteries (ASSBs) are considered to be a breakthrough that overcomes the limitations of conventional lithium-ion batteries. However, the morphological instability caused by dendritic Li growth leading to short-circuiting is a critical problem, and solving it is still an outstanding conundrum. In this work, we demonstrate that the morphological instability can be bypassed by developing a pressure gradient between the land (contact) and void (noncontact) regions of the interface of the solid electrolyte and electrode. This pressure gradient leads to inward Li plating of the interfacial void space in a structured electrode. Using simulations and investigations of Li plating morphology for a square hole-patterned electrode and a sulfide electrolyte, we demonstrate that the pressure gradient at the interface directs total Li+ flux toward the void region, resulting in preferential Li plating in the interfacial void space. This work provides a new academic strategy for controlling the direction and position of Li plating in ASSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI