Assessment of Sepsis Risk at Admission to the Emergency Department: Clinical Interpretable Prediction Model

降钙素原 败血症 医学 接收机工作特性 急诊科 内科学 置信区间 曲线下面积 重症监护医学 精神科
作者
Umran Aygun,Fatma Hilal Yağın,Burak Yagin,Şeyma Yaşar,Cemil Çolak,Ahmet Selim Özkan,Luca Paolo Ardigò
出处
期刊:Diagnostics [MDPI AG]
卷期号:14 (5): 457-457 被引量:1
标识
DOI:10.3390/diagnostics14050457
摘要

This study aims to develop an interpretable prediction model based on explainable artificial intelligence to predict bacterial sepsis and discover important biomarkers. A total of 1572 adult patients, 560 of whom were sepsis positive and 1012 of whom were negative, who were admitted to the emergency department with suspicion of sepsis, were examined. We investigated the performance characteristics of sepsis biomarkers alone and in combination for confirmed sepsis diagnosis using Sepsis-3 criteria. Three different tree-based algorithms—Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost)—were used for sepsis prediction, and after examining comprehensive performance metrics, descriptions of the optimal model were obtained with the SHAP method. The XGBoost model achieved accuracy of 0.898 (0.868–0.929) and area under the ROC curve (AUC) of 0.940 (0.898–0.980) with a 95% confidence interval. The five biomarkers for predicting sepsis were age, respiratory rate, oxygen saturation, procalcitonin, and positive blood culture. SHAP results revealed that older age, higher respiratory rate, procalcitonin, neutrophil–lymphocyte count ratio, C-reactive protein, plaque, leukocyte particle concentration, as well as lower oxygen saturation, systolic blood pressure, and hemoglobin levels increased the risk of sepsis. As a result, the Explainable Artificial Intelligence (XAI)-based prediction model can guide clinicians in the early diagnosis and treatment of sepsis, providing more effective sepsis management and potentially reducing mortality rates and medical costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汕头凯奇完成签到,获得积分10
刚刚
兴猡应助aaaa采纳,获得10
1秒前
2秒前
李健的小迷弟应助1112采纳,获得10
2秒前
jiahao发布了新的文献求助10
2秒前
道友等等我完成签到,获得积分0
4秒前
星辰大海应助临妤采纳,获得10
4秒前
米九完成签到,获得积分10
5秒前
lin完成签到,获得积分10
6秒前
2233完成签到,获得积分10
6秒前
枳花完成签到 ,获得积分10
6秒前
若E18完成签到,获得积分10
6秒前
Amy完成签到,获得积分10
7秒前
海4015应助wqwq69采纳,获得10
7秒前
phoebe_uu发布了新的文献求助10
8秒前
ygr完成签到,获得积分0
9秒前
浅是宝贝完成签到,获得积分10
9秒前
shadow完成签到,获得积分10
10秒前
香蕉觅云应助戴先森采纳,获得10
10秒前
dh完成签到,获得积分10
10秒前
plumcute完成签到,获得积分10
10秒前
agent完成签到 ,获得积分10
10秒前
隐形曼青应助boom采纳,获得10
11秒前
药学小马完成签到,获得积分10
11秒前
11秒前
123完成签到,获得积分20
12秒前
敏感元正完成签到,获得积分10
13秒前
Cc完成签到,获得积分10
13秒前
Mrchen完成签到,获得积分10
13秒前
14秒前
飞飞完成签到,获得积分10
15秒前
luffy189完成签到 ,获得积分10
16秒前
娜娜完成签到,获得积分10
16秒前
jiahao完成签到,获得积分10
16秒前
幸福大碗完成签到,获得积分10
16秒前
一只小居完成签到,获得积分10
17秒前
jagger完成签到,获得积分10
17秒前
畅快的胡萝卜完成签到,获得积分10
17秒前
临妤发布了新的文献求助10
18秒前
森林木完成签到,获得积分10
18秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169