MFA-DTI: Drug-target interaction prediction based on multi-feature fusion adopted framework

杠杆(统计) 特征(语言学) 机器学习 计算机科学 图形 深度学习 过程(计算) 数据挖掘 人工智能 理论计算机科学 语言学 操作系统 哲学
作者
Siqi Chen,Minghui Li,Ivan Semenov
出处
期刊:Methods [Elsevier]
卷期号:224: 79-92 被引量:1
标识
DOI:10.1016/j.ymeth.2024.02.008
摘要

The identification of drug-target interactions (DTI) is a valuable step in the drug discovery and repositioning process. However, traditional laboratory experiments are time-consuming and expensive. Computational methods have streamlined research to determine DTIs. The application of deep learning methods has significantly improved the prediction performance for DTIs. Modern deep learning methods can leverage multiple sources of information, including sequence data that contains biological structural information, and interaction data. While useful, these methods cannot be effectively applied to each type of information individually (e.g., chemical structure and interaction network) and do not take into account the specificity of DTI data such as low- or zero-interaction biological entities. To overcome these limitations, we propose a method called MFA-DTI (Multi-feature Fusion Adopted framework for DTI). MFA-DTI consists of three modules: an interaction graph learning module that processes the interaction network to generate interaction vectors, a chemical structure learning module that extracts features from the chemical structure, and a fusion module that combines these features for the final prediction. To validate the performance of MFA-DTI, we conducted experiments on six public datasets under different settings. The results indicate that the proposed method is highly effective in various settings and outperforms state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bastien完成签到 ,获得积分10
1秒前
1秒前
苹果的面包完成签到,获得积分20
2秒前
2秒前
领导范儿应助ylzylz采纳,获得10
3秒前
任仕春发布了新的文献求助10
3秒前
4秒前
lingxu发布了新的文献求助10
4秒前
zhongbo发布了新的文献求助10
5秒前
小蘑菇应助微笑芯采纳,获得10
7秒前
8秒前
田様应助童绾绾采纳,获得10
8秒前
Yidie发布了新的文献求助10
9秒前
Jasper应助畅快的俊驰采纳,获得10
9秒前
在水一方应助晚星就位采纳,获得10
9秒前
9秒前
11秒前
纯情的孤风完成签到,获得积分10
11秒前
ding应助努力科研采纳,获得10
11秒前
11秒前
11秒前
11秒前
健壮平灵完成签到,获得积分10
12秒前
12秒前
888发布了新的文献求助50
12秒前
yuanqing完成签到,获得积分20
12秒前
弹幕发布了新的文献求助10
13秒前
14秒前
tf发布了新的文献求助10
15秒前
lizzz发布了新的文献求助10
16秒前
jimey完成签到,获得积分10
16秒前
16秒前
夏夏是只猫完成签到,获得积分10
16秒前
小李完成签到,获得积分20
17秒前
Jacey79完成签到 ,获得积分10
18秒前
MengpoZhao发布了新的文献求助10
18秒前
ylzylz发布了新的文献求助10
19秒前
yeerenn发布了新的文献求助10
19秒前
水蜜桃完成签到 ,获得积分10
20秒前
直率妙梦完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213