已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributed proportional likelihood ratio model with application to data integration across clinical sites

统计 计算机科学 数学
作者
Chongliang Luo,Rui Duan,Mackenzie Edmondson,Jiasheng Shi,Mitchell Maltenfort,Jeffrey S. Morris,Christopher B. Forrest,Rebecca A. Hubbard,Yong Chen
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (1)
标识
DOI:10.1214/23-aoas1779
摘要

Real-world evidence synthesis through integration of data from distributed research networks has gained increasing attention in recent years. Due to privacy concerns and restrictions of sharing patient-level data, distributed algorithms that do not require sharing patient level information are in great need for facilitating multisite collaborations. On the other hand, data collected at multiple sites often come from diverse populations, and there exists a substantial amount of heterogeneity across sites in patient characteristics. Most of the existing distributed algorithms have ignored such between-site heterogeneity. In this paper we aim to fill this methodological gap by proposing a general distributed algorithm. We develop our distributed algorithm based on a general semiparametric model, namely, the proportional likelihood ratio model (Biometrika 99 (2012) 211–222), which is a semiparametric extension of generalized linear model. We devise the proportional likelihood ratio model with site-specific baseline function, to account for between-site heterogeneity, and shared regression parameters to borrow information across sites. Under this flexible formulation, our distributed algorithm is designed to be privacy-preserving and communication-efficient (i.e., only one round of communication across sites is needed). We validate our method via simulation studies and demonstrate the utility of our method via a multisite study of pediatric avoidable hospitalization based on electronic health record data from a total of 354,672 patients across 26 different clinical sites within the Children's Hospital of Philadelphia health system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcr163应助呆瓜采纳,获得100
1秒前
研友_Z1JXJ8发布了新的文献求助10
2秒前
执着的寄凡完成签到,获得积分10
2秒前
Murphy完成签到,获得积分10
2秒前
蔡俊辉发布了新的文献求助10
3秒前
5秒前
蔡俊辉完成签到,获得积分20
7秒前
动听的琴完成签到,获得积分10
10秒前
今后应助坦率的翠容采纳,获得10
11秒前
halabouqii发布了新的文献求助10
11秒前
培培完成签到 ,获得积分10
12秒前
snah完成签到 ,获得积分10
12秒前
13秒前
ReX547413关注了科研通微信公众号
14秒前
今我来思完成签到 ,获得积分10
16秒前
18秒前
灵鹿发布了新的文献求助10
18秒前
18秒前
xiangwang完成签到 ,获得积分10
21秒前
romeo发布了新的文献求助10
23秒前
uniquedl完成签到 ,获得积分10
24秒前
24秒前
坦率的翠容完成签到,获得积分20
24秒前
YaN完成签到 ,获得积分10
26秒前
LjXiong完成签到 ,获得积分10
26秒前
大模型应助romeo采纳,获得10
26秒前
酥饼完成签到,获得积分10
26秒前
追光者完成签到,获得积分10
28秒前
29秒前
31秒前
33秒前
34秒前
杜青完成签到,获得积分10
35秒前
ReX547413发布了新的文献求助10
36秒前
36秒前
坚强觅珍完成签到 ,获得积分10
37秒前
大肥羊完成签到,获得积分20
37秒前
逃离地球完成签到 ,获得积分10
38秒前
大肥羊发布了新的文献求助10
40秒前
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544330
求助须知:如何正确求助?哪些是违规求助? 3121530
关于积分的说明 9347654
捐赠科研通 2819788
什么是DOI,文献DOI怎么找? 1550415
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265