工作流程
计算机科学
人工智能
自然语言处理
深度学习
数据库
作者
Siyu Liu,Tongqi Wen,Arvind Pattamatta,David J. Srolovitz
出处
期刊:Cornell University - arXiv
日期:2024-01-31
被引量:3
标识
DOI:10.48550/arxiv.2401.17788
摘要
With the advent of ChatGPT, large language models (LLMs) have demonstrated considerable progress across a wide array of domains. Owing to the extensive number of parameters and training data in LLMs, these models inherently encompass an expansive and comprehensive materials knowledge database, far exceeding the capabilities of individual researcher. Nonetheless, devising methods to harness the knowledge embedded within LLMs for the design and discovery of novel materials remains a formidable challenge. In this study, we introduce a general approach for addressing materials classification problems, which incorporates LLMs, prompt engineering, and deep learning algorithms. Utilizing a dataset of metallic glasses as a case study, our methodology achieved an improvement of up to 463% in prediction accuracy compared to conventional classification models. These findings underscore the potential of leveraging textual knowledge generated by LLMs for materials especially with sparse datasets, thereby promoting innovation in materials discovery and design.
科研通智能强力驱动
Strongly Powered by AbleSci AI