Automated Wellhead Monitoring Using Deep Learning from Multimodal Imaging

井口 计算机科学 人工智能 分割 计算机视觉 图像分割 模拟 工程类 石油工程
作者
Weichang Li,Yong Ma,Damian San Roman Alerigi
标识
DOI:10.2523/iptc-23632-ms
摘要

Abstract Wellhead growth caused by temperature and pressure effects during production can lead to severe consequences, causing well integrity failure and surface equipment damage, sometimes with catastrophic incidents at huge safety risks and economic losses. In addition, it may lead to unintended emission when pipe connections are damaged. This work develops multimodal imaging and computer vision- based methods for automated wellhead equipment health monitoring, notably wellhead displacement or growth detection and quantification. Wellhead equipment is imaged at the well site using optical and/or hyperspectral cameras if available. The captured wellhead imagery or video is then fed into a computer vision system for analysis to determine the wellhead health condition such as the amount of displacement or growth, using machine learning techniques. First a set of sample wellhead images are labeled with wellhead segmentation annotation or bounding boxes. The set of sample data are then grouped randomly into training/validation/testing subsets, according to certain partition ratio. We then construct semantic segmentation and object detection models; train these models on the training and validation subsets and then apply to testing data set for performance assessment. These trained models can then be applied to new wellsite imagery from permanent monitoring to extract wellhead equipment. The extracted wellhead equipment image is compared with the baseline wellhead image and dimension for growth detection and quantification. This removes interferences from background objects, ambient lighting variations and other non-equipment related conditions. We collected over 4000 sample well-site images that contain well-head equipment, among which we have labeled a subset of 1200 samples which are randomly partitioned into 900 training samples, 150 validation and 150 testing samples. After training and validating the Mask R-CNN model on the training and validation samples, respectively, the model is then applied on the testing samples. The training and validation performance in terms of Intersection over Union (IOU) reach 89% and 78%, respectively, and the test performance achieves 75% IOU. The segmented well equipment image is then compared with the baseline. After 2D cross-registering, we have achieved highly accurate prediction of displacement. This computer vision and image driven based approach for wellhead displacement prediction has great advantage over traditional thermos-stress model-based approaches in that it can detect displacement in real-time with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助winwin采纳,获得10
刚刚
刚刚
侯美琪发布了新的文献求助10
1秒前
hzs完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助mkl采纳,获得10
3秒前
4秒前
泥瓦酱完成签到,获得积分20
4秒前
5秒前
尊敬采文发布了新的文献求助10
6秒前
阿巴阿巴完成签到,获得积分10
6秒前
米大王完成签到,获得积分10
7秒前
7秒前
7秒前
小小虾发布了新的文献求助10
7秒前
桐桐应助xx采纳,获得10
8秒前
akamanuo完成签到,获得积分10
8秒前
古阿南完成签到 ,获得积分10
8秒前
天天快乐应助细腻的书雁采纳,获得10
8秒前
路遥知马力完成签到 ,获得积分10
9秒前
不甜发布了新的文献求助10
9秒前
9秒前
乐乐应助泥瓦酱采纳,获得10
10秒前
Grace完成签到,获得积分10
10秒前
10秒前
完美世界应助棋士采纳,获得10
11秒前
Cheung2121完成签到,获得积分20
11秒前
12秒前
从容的天空完成签到,获得积分10
12秒前
12秒前
情怀应助liuzengzhang666采纳,获得10
13秒前
13秒前
一键滑动解锁完成签到,获得积分20
13秒前
dzc应助xiaoyan.yao采纳,获得10
13秒前
14秒前
15秒前
欣慰的亦绿关注了科研通微信公众号
15秒前
乐乐应助niniyiya采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719