已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Wellhead Monitoring Using Deep Learning from Multimodal Imaging

井口 计算机科学 人工智能 分割 计算机视觉 图像分割 模拟 工程类 石油工程
作者
Weichang Li,Yong Ma,Damian San Roman Alerigi
标识
DOI:10.2523/iptc-23632-ms
摘要

Abstract Wellhead growth caused by temperature and pressure effects during production can lead to severe consequences, causing well integrity failure and surface equipment damage, sometimes with catastrophic incidents at huge safety risks and economic losses. In addition, it may lead to unintended emission when pipe connections are damaged. This work develops multimodal imaging and computer vision- based methods for automated wellhead equipment health monitoring, notably wellhead displacement or growth detection and quantification. Wellhead equipment is imaged at the well site using optical and/or hyperspectral cameras if available. The captured wellhead imagery or video is then fed into a computer vision system for analysis to determine the wellhead health condition such as the amount of displacement or growth, using machine learning techniques. First a set of sample wellhead images are labeled with wellhead segmentation annotation or bounding boxes. The set of sample data are then grouped randomly into training/validation/testing subsets, according to certain partition ratio. We then construct semantic segmentation and object detection models; train these models on the training and validation subsets and then apply to testing data set for performance assessment. These trained models can then be applied to new wellsite imagery from permanent monitoring to extract wellhead equipment. The extracted wellhead equipment image is compared with the baseline wellhead image and dimension for growth detection and quantification. This removes interferences from background objects, ambient lighting variations and other non-equipment related conditions. We collected over 4000 sample well-site images that contain well-head equipment, among which we have labeled a subset of 1200 samples which are randomly partitioned into 900 training samples, 150 validation and 150 testing samples. After training and validating the Mask R-CNN model on the training and validation samples, respectively, the model is then applied on the testing samples. The training and validation performance in terms of Intersection over Union (IOU) reach 89% and 78%, respectively, and the test performance achieves 75% IOU. The segmented well equipment image is then compared with the baseline. After 2D cross-registering, we have achieved highly accurate prediction of displacement. This computer vision and image driven based approach for wellhead displacement prediction has great advantage over traditional thermos-stress model-based approaches in that it can detect displacement in real-time with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alex完成签到,获得积分20
3秒前
TJY发布了新的文献求助10
4秒前
Nancy0818完成签到 ,获得积分10
4秒前
5秒前
8秒前
小炮仗完成签到 ,获得积分10
11秒前
ding应助xmy采纳,获得10
12秒前
猛男发布了新的文献求助10
12秒前
虚心的惮完成签到 ,获得积分10
15秒前
HMUBIN完成签到,获得积分20
19秒前
纪震宇发布了新的文献求助10
19秒前
丘比特应助Dan采纳,获得10
21秒前
陈尹蓝完成签到 ,获得积分10
21秒前
领导范儿应助昊昊学习采纳,获得10
21秒前
猛男完成签到,获得积分10
22秒前
mervin完成签到,获得积分10
23秒前
26秒前
bake完成签到,获得积分10
26秒前
Tying完成签到,获得积分10
27秒前
科研通AI5应助纪震宇采纳,获得10
27秒前
xmy发布了新的文献求助10
29秒前
29秒前
29秒前
ezekiet完成签到 ,获得积分10
32秒前
丘比特应助nuonuoweng采纳,获得30
32秒前
HMUBIN发布了新的文献求助10
33秒前
Dan发布了新的文献求助10
34秒前
34秒前
陈言川关注了科研通微信公众号
35秒前
35秒前
子凡完成签到 ,获得积分10
35秒前
玛卡巴卡完成签到 ,获得积分10
36秒前
39秒前
Tying发布了新的文献求助10
40秒前
45秒前
50秒前
ding应助TJY采纳,获得10
52秒前
陈言川发布了新的文献求助10
54秒前
54秒前
DannyNickolov完成签到,获得积分20
55秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544342
求助须知:如何正确求助?哪些是违规求助? 3121530
关于积分的说明 9347730
捐赠科研通 2819797
什么是DOI,文献DOI怎么找? 1550426
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265