A novel end-to-end deep convolutional neural network based skin lesion classification framework

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 预处理器 分割 皮肤损伤 特征提取 端到端原则 机器学习 病理 医学
作者
A. Razia Sulthana,Vinay Chamola,Zain Hussain,Faisal Albalwy,Amir Hussain
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123056-123056 被引量:2
标识
DOI:10.1016/j.eswa.2023.123056
摘要

Skin diseases are reported to contribute 1.79% of the global burden of disease. The accurate diagnosis of specific skin diseases is known to be a challenging task due, in part, to variations in skin tone, texture, body hair, etc. Classification of skin lesions using machine learning is a demanding task, due to the varying shapes, sizes, colors, and vague boundaries of some lesions. The use of deep learning for the classification of skin lesion images has been shown to help diagnose the disease at its early stages. Recent studies have demonstrated that these models perform well in skin detection tasks, with high accuracy and efficiency. Our paper proposes an end-to-end framework for skin lesion classification, and our contributions are two-fold. Firstly, two fundamentally different algorithms are proposed for segmenting and extracting features from images during image preprocessing. Secondly, we present a deep convolutional neural network model, S-MobileNet that aims to classify 7 different types of skin lesions. We used the HAM10000 dataset, which consists of 10000 dermatoscopic images from different populations and is publicly available through the International Skin Imaging Collaboration (ISIC) Archive. The image data was preprocessed to make it suitable for modeling. Exploratory data analysis (EDA) was performed to understand various attributes and their relationships within the dataset. A modified version of a Gaussian filtering algorithm and SFTA was applied for image segmentation and feature extraction. The processed dataset was then fed into the S-MobileNet model. This model was designed to be lightweight and was analysed in three dimensions: using the Relu Activation function, the Mish activation function, and applying compression at intermediary layers. In addition, an alternative approach for compressing layers in the S-MobileNet architecture was applied to ensure a lightweight model that does not compromise on performance. The model was trained using several experiments and assessed using various performance measures, including, loss, accuracy, precision, and the F1-score. Our results demonstrate an improvement in model performance when applying a preprocessing technique. The Mish activation function was shown to outperform Relu. Further, the classification accuracy of the compressed S-MobileNet was shown to outperform S-MobileNet. To conclude, our findings have shown that our proposed deep learning-based S-MobileNet model is the optimal approach for classifying skin lesion images in the HAM10000 dataset. In the future, our approach could be adapted and applied to other datasets, and validated to develop a skin lesion framework that can be utilised in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingyi601完成签到,获得积分10
刚刚
tt123完成签到,获得积分10
刚刚
1秒前
糟糕的学姐完成签到,获得积分10
2秒前
yookia应助vbbbj采纳,获得10
2秒前
今后应助124cndhaP采纳,获得30
3秒前
meng完成签到 ,获得积分10
4秒前
HHHZZZ完成签到,获得积分10
4秒前
香蕉沧海发布了新的文献求助10
5秒前
高挑的梦芝完成签到,获得积分10
6秒前
婷123发布了新的文献求助20
6秒前
7秒前
我不爱池鱼应助Torment采纳,获得10
7秒前
小阮完成签到,获得积分10
7秒前
7秒前
迷人问兰发布了新的文献求助30
8秒前
vovoking完成签到 ,获得积分10
8秒前
9秒前
Jasper应助nuannuan采纳,获得10
9秒前
hzwyyds应助栗子采纳,获得10
11秒前
李希发布了新的文献求助50
11秒前
英俊的铭应助元宝采纳,获得10
12秒前
ZJHYNL应助111采纳,获得20
12秒前
早睡早起发布了新的文献求助10
13秒前
鳗鱼焦完成签到 ,获得积分10
13秒前
新威宝贝发布了新的文献求助10
14秒前
Jocd完成签到,获得积分10
19秒前
小二郎应助SAOKA采纳,获得10
21秒前
农夫果园完成签到,获得积分10
23秒前
25秒前
加二完成签到,获得积分10
26秒前
27秒前
辞忧完成签到,获得积分10
27秒前
无情的豆芽完成签到 ,获得积分10
30秒前
ASDS发布了新的文献求助10
30秒前
SAOKA发布了新的文献求助10
32秒前
32秒前
上官若男应助航仔采纳,获得10
32秒前
燕子完成签到,获得积分10
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713