亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel end-to-end deep convolutional neural network based skin lesion classification framework

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 预处理器 分割 皮肤损伤 特征提取 端到端原则 机器学习 病理 医学
作者
A. Razia Sulthana,Vinay Chamola,Zain Hussain,Faisal Albalwy,Amir Hussain
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:246: 123056-123056 被引量:2
标识
DOI:10.1016/j.eswa.2023.123056
摘要

Skin diseases are reported to contribute 1.79% of the global burden of disease. The accurate diagnosis of specific skin diseases is known to be a challenging task due, in part, to variations in skin tone, texture, body hair, etc. Classification of skin lesions using machine learning is a demanding task, due to the varying shapes, sizes, colors, and vague boundaries of some lesions. The use of deep learning for the classification of skin lesion images has been shown to help diagnose the disease at its early stages. Recent studies have demonstrated that these models perform well in skin detection tasks, with high accuracy and efficiency. Our paper proposes an end-to-end framework for skin lesion classification, and our contributions are two-fold. Firstly, two fundamentally different algorithms are proposed for segmenting and extracting features from images during image preprocessing. Secondly, we present a deep convolutional neural network model, S-MobileNet that aims to classify 7 different types of skin lesions. We used the HAM10000 dataset, which consists of 10000 dermatoscopic images from different populations and is publicly available through the International Skin Imaging Collaboration (ISIC) Archive. The image data was preprocessed to make it suitable for modeling. Exploratory data analysis (EDA) was performed to understand various attributes and their relationships within the dataset. A modified version of a Gaussian filtering algorithm and SFTA was applied for image segmentation and feature extraction. The processed dataset was then fed into the S-MobileNet model. This model was designed to be lightweight and was analysed in three dimensions: using the Relu Activation function, the Mish activation function, and applying compression at intermediary layers. In addition, an alternative approach for compressing layers in the S-MobileNet architecture was applied to ensure a lightweight model that does not compromise on performance. The model was trained using several experiments and assessed using various performance measures, including, loss, accuracy, precision, and the F1-score. Our results demonstrate an improvement in model performance when applying a preprocessing technique. The Mish activation function was shown to outperform Relu. Further, the classification accuracy of the compressed S-MobileNet was shown to outperform S-MobileNet. To conclude, our findings have shown that our proposed deep learning-based S-MobileNet model is the optimal approach for classifying skin lesion images in the HAM10000 dataset. In the future, our approach could be adapted and applied to other datasets, and validated to develop a skin lesion framework that can be utilised in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美的海完成签到 ,获得积分0
47秒前
1分钟前
领导范儿应助savagecas采纳,获得10
1分钟前
1分钟前
1分钟前
savagecas发布了新的文献求助10
1分钟前
激情的冰绿完成签到,获得积分10
1分钟前
1分钟前
专注的月亮完成签到,获得积分10
2分钟前
zhangyt完成签到 ,获得积分10
2分钟前
savagecas完成签到,获得积分20
2分钟前
汉堡包应助hotongue采纳,获得10
4分钟前
4分钟前
hotongue发布了新的文献求助10
4分钟前
4分钟前
hotongue完成签到,获得积分10
4分钟前
4分钟前
希望天下0贩的0应助Gryphon采纳,获得10
4分钟前
坚定的硬币完成签到,获得积分10
5分钟前
5分钟前
Gryphon发布了新的文献求助10
5分钟前
Gryphon完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
小二郎应助Zz1oong采纳,获得10
5分钟前
Owen应助研友_闾丘枫采纳,获得10
6分钟前
研友_闾丘枫完成签到,获得积分10
6分钟前
6分钟前
6分钟前
Chocolat_Chaud完成签到 ,获得积分10
6分钟前
现代青枫应助Omni采纳,获得10
6分钟前
现代青枫应助积极的西牛采纳,获得10
7分钟前
王晓静完成签到 ,获得积分10
9分钟前
9分钟前
打打应助言屿采纳,获得10
11分钟前
11分钟前
fsznc1完成签到 ,获得积分0
12分钟前
Woke完成签到 ,获得积分10
12分钟前
完美松鼠应助踏实的芸遥采纳,获得10
12分钟前
谢小盟完成签到 ,获得积分10
12分钟前
拓跋书芹发布了新的文献求助10
13分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179910
求助须知:如何正确求助?哪些是违规求助? 2830334
关于积分的说明 7976384
捐赠科研通 2491890
什么是DOI,文献DOI怎么找? 1329012
科研通“疑难数据库(出版商)”最低求助积分说明 635596
版权声明 602927