Inversion of large-scale citrus soil moisture using multi-temporal Sentinel-1 and Landsat-8 data

环境科学 遥感 含水量 植被(病理学) 精准农业 土壤科学 水文学(农业) 地质学 地理 岩土工程 医学 农业 病理 考古
作者
Zongjun Wu,Ningbo Cui,Wenjiang Zhang,Daozhi Gong,Chunwei Liu,Quanshan Liu,Shunsheng Zheng,Zhihui Wang,Lu Zhao,Yenan Yang
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:294: 108718-108718 被引量:5
标识
DOI:10.1016/j.agwat.2024.108718
摘要

Soil moisture is a significant variable in agricultural study and precision irrigation decision-making. It determines the soil water availability for plants, directly influencing plant growth, yield and quality. Owing to the variations in regional microclimate, landform difference, soil type and vegetation coverage, the soil moisture has strong spatial-temporal heterogeneity on a large regional scale. Micro-wave remote sensing can be used to invert soil moisture based on the dielectric constant under different weather conditions, while optical remote sensing utilizes spectral characteristics to estimate the physiological and ecological information of vegetation. In this study, two new hybrid models (ACO-RF and SSA-RF) were structured by optimizing the standalone random forest (RF) based on the ant colony optimization algorithm (ACO) and sparrow search algorithm (SSA), and six input combinations based on the multi-temporal Sentinel-1 and Landsat-8 remote sensing data from different sensors (optical, thermal and radar sensors) were used. The standalone RF, ACO-RF, and SSA-RF models with different combinations of inputs were employed to predict the soil moisture at different depths (5 cm, 10 cm, 20 cm, 40 cm) in a large-scale drip-irrigated citrus orchard. The results showed that the ACO-RF and SSA-RF outperformed the standalone RF model in terms of prediction accuracy at a depth of 0–40 cm, with R2 of 0.800–0.921 and 0.504–0.798, RRMSE of 7.214–16.284% and 11.124–22.214%, respectively. In the hybrid model, the ACO-RF model had better prediction accuracy than the SSA-RF model, with R2 of 0.805–0.921 and 0.800–0.911, RRMSE of 7.214–13.244% and 8.274–16.284%, respectively. At depths of 5 cm, 10 cm and 20 cm, the inversion accuracy of the model with microwave inputs was higher than that with multispectral inputs, with R2 of 0.556–0.888 and 0.541–0.886, RRMSE of 9.015–19.544% and 9.124–22.214%, respectively. However, at a depth of 40 cm, the inversion accuracy of the model with multispectral inputs was higher than that with microwave inputs, with R2 of 0.532–0.841 and 0.508–0.831, RRMSE of 9.124–21.021% and 9.142–21.214%, respectively. The model with multispectral, thermal, and microwave inputs exhibited the highest accuracy in predicting soil moisture, with R2 of 0.635–0.921, RRMSE of 7.214−18.564%, respectively. Therefore, the ACO-RF with multisource remote sensing data is recommended to predict the soil moisture in the drip-irrigated citrus orchard. This approach can provide data support for making intelligent irrigation decisions on a large-scale grid land lots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨风发布了新的文献求助10
2秒前
无花果应助仙林AK47采纳,获得10
8秒前
SciGPT应助十一采纳,获得10
10秒前
liv应助六包辣条采纳,获得20
11秒前
123发布了新的文献求助10
11秒前
何仙姑发布了新的文献求助20
11秒前
8R60d8应助超爱吃烤鸭采纳,获得10
11秒前
orixero应助林lin采纳,获得10
11秒前
奥黛丽发布了新的文献求助10
12秒前
程艳完成签到 ,获得积分10
13秒前
14秒前
wang完成签到,获得积分10
15秒前
亮子完成签到,获得积分10
15秒前
cheryl完成签到,获得积分10
16秒前
晨风完成签到,获得积分20
17秒前
18秒前
研友_Ze0vBn完成签到,获得积分10
18秒前
高大鸭子完成签到 ,获得积分10
19秒前
22秒前
种草匠完成签到,获得积分10
23秒前
23秒前
23秒前
小马甲应助tcmlida采纳,获得30
24秒前
cocolu应助naturehome采纳,获得10
25秒前
xty发布了新的文献求助10
26秒前
搜集达人应助科研通管家采纳,获得30
27秒前
大模型应助科研通管家采纳,获得10
28秒前
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
duanhuiyuan应助科研通管家采纳,获得10
28秒前
1321完成签到,获得积分10
28秒前
仙林AK47发布了新的文献求助20
29秒前
29秒前
29秒前
30秒前
xieunx完成签到,获得积分10
31秒前
啦啦啦完成签到,获得积分10
31秒前
zhangscience完成签到,获得积分20
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441528
求助须知:如何正确求助?哪些是违规求助? 3038152
关于积分的说明 8970749
捐赠科研通 2726439
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688232