Inversion of large-scale citrus soil moisture using multi-temporal Sentinel-1 and Landsat-8 data

环境科学 遥感 含水量 植被(病理学) 精准农业 土壤科学 水文学(农业) 地质学 地理 岩土工程 医学 农业 病理 考古
作者
Zongjun Wu,Ningbo Cui,Wenjiang Zhang,Daozhi Gong,Chunwei Liu,Quanshan Liu,Shunsheng Zheng,Zhihui Wang,Lu Zhao,Yenan Yang
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:294: 108718-108718 被引量:9
标识
DOI:10.1016/j.agwat.2024.108718
摘要

Soil moisture is a significant variable in agricultural study and precision irrigation decision-making. It determines the soil water availability for plants, directly influencing plant growth, yield and quality. Owing to the variations in regional microclimate, landform difference, soil type and vegetation coverage, the soil moisture has strong spatial-temporal heterogeneity on a large regional scale. Micro-wave remote sensing can be used to invert soil moisture based on the dielectric constant under different weather conditions, while optical remote sensing utilizes spectral characteristics to estimate the physiological and ecological information of vegetation. In this study, two new hybrid models (ACO-RF and SSA-RF) were structured by optimizing the standalone random forest (RF) based on the ant colony optimization algorithm (ACO) and sparrow search algorithm (SSA), and six input combinations based on the multi-temporal Sentinel-1 and Landsat-8 remote sensing data from different sensors (optical, thermal and radar sensors) were used. The standalone RF, ACO-RF, and SSA-RF models with different combinations of inputs were employed to predict the soil moisture at different depths (5 cm, 10 cm, 20 cm, 40 cm) in a large-scale drip-irrigated citrus orchard. The results showed that the ACO-RF and SSA-RF outperformed the standalone RF model in terms of prediction accuracy at a depth of 0–40 cm, with R2 of 0.800–0.921 and 0.504–0.798, RRMSE of 7.214–16.284% and 11.124–22.214%, respectively. In the hybrid model, the ACO-RF model had better prediction accuracy than the SSA-RF model, with R2 of 0.805–0.921 and 0.800–0.911, RRMSE of 7.214–13.244% and 8.274–16.284%, respectively. At depths of 5 cm, 10 cm and 20 cm, the inversion accuracy of the model with microwave inputs was higher than that with multispectral inputs, with R2 of 0.556–0.888 and 0.541–0.886, RRMSE of 9.015–19.544% and 9.124–22.214%, respectively. However, at a depth of 40 cm, the inversion accuracy of the model with multispectral inputs was higher than that with microwave inputs, with R2 of 0.532–0.841 and 0.508–0.831, RRMSE of 9.124–21.021% and 9.142–21.214%, respectively. The model with multispectral, thermal, and microwave inputs exhibited the highest accuracy in predicting soil moisture, with R2 of 0.635–0.921, RRMSE of 7.214−18.564%, respectively. Therefore, the ACO-RF with multisource remote sensing data is recommended to predict the soil moisture in the drip-irrigated citrus orchard. This approach can provide data support for making intelligent irrigation decisions on a large-scale grid land lots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜牛青发布了新的文献求助10
1秒前
peach发布了新的文献求助10
1秒前
2秒前
小慧儿完成签到 ,获得积分10
2秒前
3秒前
xuan完成签到,获得积分10
3秒前
花露水发布了新的文献求助50
3秒前
3-HP发布了新的文献求助10
3秒前
细腻的梦蕊应助jukongka采纳,获得10
4秒前
白石杏完成签到,获得积分10
4秒前
4秒前
C.Cat完成签到,获得积分10
4秒前
4秒前
yuyuyu完成签到,获得积分10
4秒前
硕硕274发布了新的文献求助10
4秒前
Cindy完成签到,获得积分10
5秒前
5秒前
SciGPT应助tesla采纳,获得10
5秒前
guoyunlong发布了新的文献求助10
5秒前
金桔完成签到,获得积分10
5秒前
6秒前
小小小珂卿完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
长情的涔完成签到 ,获得积分10
7秒前
7秒前
玛奇朵发布了新的文献求助30
7秒前
7秒前
小小狗完成签到,获得积分10
7秒前
旅行的小七仔完成签到,获得积分10
7秒前
Cindy发布了新的文献求助10
8秒前
哈哈哈完成签到,获得积分10
8秒前
Zyou完成签到,获得积分10
8秒前
csy完成签到,获得积分10
8秒前
JamesPei应助无语的听筠采纳,获得10
9秒前
健壮的惠发布了新的文献求助10
9秒前
cc完成签到,获得积分20
9秒前
语霖仙完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556269
求助须知:如何正确求助?哪些是违规求助? 3131813
关于积分的说明 9393417
捐赠科研通 2831860
什么是DOI,文献DOI怎么找? 1556519
邀请新用户注册赠送积分活动 726691
科研通“疑难数据库(出版商)”最低求助积分说明 716012