Predicting Risk Stratification in Early-Stage Endometrial Carcinoma: Significance of Multiparametric MRI Radiomics Model

磁共振成像 无线电技术 危险分层 医学 阶段(地层学) 放射科 背景(考古学) 预测值 接收机工作特性 核医学 人工智能 计算机科学 内科学 生物 古生物学
作者
Huan Meng,Yu-Feng Sun,Yu Zhang,Ya-Nan Yu,Jing Wang,Jia‐Ning Wang,Linyan Xue,Xiaoping Yin
标识
DOI:10.1007/s10278-023-00936-4
摘要

Endometrial carcinoma (EC) risk stratification prior to surgery is crucial for clinical treatment. In this study, we intend to evaluate the predictive value of radiomics models based on magnetic resonance imaging (MRI) for risk stratification and staging of early-stage EC. The study included 155 patients who underwent MRI examinations prior to surgery and were pathologically diagnosed with early-stage EC between January, 2020, and September, 2022. Three-dimensional radiomics features were extracted from segmented tumor images captured by MRI scans (including T2WI, CE-T1WI delayed phase, and ADC), with 1521 features extracted from each of the three modalities. Then, using five-fold cross-validation and a multilayer perceptron algorithm, these features were filtered using Pearson's correlation coefficient to develop a prediction model for risk stratification and staging of EC. The performance of each model was assessed by analyzing ROC curves and calculating the AUC, accuracy, sensitivity, and specificity. In terms of risk stratification, the CE-T1 sequence demonstrated the highest predictive accuracy of 0.858 ± 0.025 and an AUC of 0.878 ± 0.042 among the three sequences. However, combining all three sequences resulted in enhanced predictive accuracy, reaching 0.881 ± 0.040, with a corresponding increase in the AUC to 0.862 ± 0.069. In the context of staging, the utilization of a combination involving T2WI with CE-T1WI led to a notably elevated predictive accuracy of 0.956 ± 0.020, surpassing the accuracy achieved when employing any singular feature. Correspondingly, the AUC was 0.979 ± 0.022. When incorporating all three sequences concurrently, the predictive accuracy reached 0.956 ± 0.000, accompanied by an AUC of 0.986 ± 0.007. It is noteworthy that this level of accuracy surpassed that of the radiologist, which stood at 0.832. The MRI radiomics model has the potential to accurately predict the risk stratification and early staging of EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao完成签到 ,获得积分10
5秒前
怡然猎豹完成签到,获得积分10
9秒前
只鱼完成签到 ,获得积分10
10秒前
lyj完成签到 ,获得积分10
13秒前
Binbin完成签到 ,获得积分10
13秒前
领导范儿应助riverflowing采纳,获得10
14秒前
18秒前
孤独丹秋发布了新的文献求助10
18秒前
梅溪湖的提词器完成签到,获得积分10
19秒前
柠七完成签到,获得积分10
20秒前
白菜发布了新的文献求助10
27秒前
41完成签到,获得积分10
29秒前
向上的小v完成签到 ,获得积分10
30秒前
huba完成签到,获得积分10
30秒前
coconut完成签到,获得积分10
31秒前
31秒前
会飞的鱼完成签到,获得积分10
33秒前
生命科学的第一推动力完成签到 ,获得积分10
35秒前
独特的忆彤完成签到 ,获得积分10
35秒前
你不知道完成签到 ,获得积分10
41秒前
NIHAO完成签到 ,获得积分10
41秒前
46秒前
46秒前
明钟达完成签到,获得积分10
52秒前
余鱼鱼完成签到,获得积分10
53秒前
54秒前
cc完成签到 ,获得积分10
56秒前
WSY完成签到 ,获得积分10
57秒前
xzx完成签到 ,获得积分10
1分钟前
肖果完成签到 ,获得积分10
1分钟前
Dannerys完成签到 ,获得积分10
1分钟前
1分钟前
独特的凝云完成签到 ,获得积分10
1分钟前
lym97完成签到 ,获得积分10
1分钟前
1分钟前
young完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674546
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787162
捐赠科研通 2940432
什么是DOI,文献DOI怎么找? 1611923
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488