State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method

健康状况 稳健性(进化) 控制理论(社会学) 电压 电池(电) 蒙特卡罗方法 噪音(视频) 电池组 计算机科学 工程类 电气工程 人工智能 控制(管理) 数学 统计 生物化学 功率(物理) 物理 化学 量子力学 图像(数学) 基因
作者
Fei Xia,Kangan Wang,Jiajun Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:64: 107161-107161 被引量:84
标识
DOI:10.1016/j.est.2023.107161
摘要

State of health (SOH) and remaining useful life (RUL) prediction are crucial for battery management systems (BMS). However, accurate SOH and RUL prediction still need to be improved due to the complicated battery aging mechanism. This work combines incremental capacity analysis (ICA) and differential voltage analysis (DVA) based on the second-order RC model with an improved Bidirectional Gated Recurrent Unit (BiGRU) to develop SOH and RUL prediction framework. Firstly, the voltage is reconstructed through the second-order RC model to obtain the incremental capacity (IC) and differential voltage (DV) curves to avoid the influence of measurement noise and the complex parameter adjustment process in the filtering method on the IC and DV curves. Then, a new set of battery aging features are extracted from the reshaped IC and DV curves to improve SOH and RUL prediction accuracy and robustness. Next, the BiGRU method with attention mechanism (BiGRU-AM) is used to build the prediction models for battery aging features, SOH, and RUL. To reduce the impact of the capacity regeneration phenomenon, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method is used to decompose the SOH prediction results, and the decomposed residual is used as the input to improve the prediction accuracy of RUL. The uncertainty of RUL prediction results is analyzed by Monte Carlo (MC) simulation. Finally, the proposed method is verified by experimental battery data from Center for Advanced Life Cycle Engineering (CALCE) and Sandia National Laboratory. Experimental results show that the voltage reconstruction results based on the second-order RC model are applied to ICA and DVA analysis, effectively avoiding the influence of noise. The RMSE of voltage reconstruction is within 0.0006, and the Pearson correlation coefficient between the four aging features extracted from the reconstructed IC/DV curve and SOH is above 0.9. Moreover, this method has good robustness to the cell inconsistency, temperature uncertainty, and a satisfied generalization ability to different battery chemistries, which the maximum RUL predicted AE of CALCE and Sandia battery is within 10 and 5, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
诸葛一笑发布了新的文献求助10
1秒前
桂花酒酿完成签到,获得积分10
1秒前
果味叶完成签到,获得积分10
1秒前
Z在发布了新的文献求助10
2秒前
花生发布了新的文献求助10
2秒前
帅气小刺猬完成签到,获得积分10
3秒前
科研通AI6应助自然砖家采纳,获得10
4秒前
一顿鸡米花完成签到,获得积分10
4秒前
Mental完成签到,获得积分10
4秒前
s0x0y0完成签到,获得积分10
5秒前
汪兆艺发布了新的文献求助10
6秒前
6秒前
77seven完成签到,获得积分10
7秒前
7秒前
寻道图强应助灵银采纳,获得30
7秒前
花生完成签到,获得积分10
8秒前
慕青应助诸葛一笑采纳,获得10
8秒前
8秒前
8秒前
建设完成签到,获得积分10
8秒前
dc关注了科研通微信公众号
9秒前
yingxinfu完成签到 ,获得积分10
10秒前
池鱼完成签到 ,获得积分10
11秒前
领导范儿应助遇见飞儿采纳,获得10
11秒前
11秒前
汪兆艺完成签到,获得积分20
12秒前
建设发布了新的文献求助10
12秒前
何必在乎发布了新的文献求助10
13秒前
卷卷应助miles采纳,获得10
13秒前
13秒前
隐形曼青应助波风水门采纳,获得10
14秒前
14秒前
殷勤的幻丝完成签到,获得积分20
15秒前
桐桐应助科研小白采纳,获得10
15秒前
Brief发布了新的文献求助10
15秒前
老福贵儿应助achilles采纳,获得10
16秒前
Stella应助achilles采纳,获得10
16秒前
超级幼旋应助achilles采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382