State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method

健康状况 稳健性(进化) 控制理论(社会学) 电压 电池(电) 蒙特卡罗方法 噪音(视频) 电池组 计算机科学 工程类 电气工程 人工智能 控制(管理) 数学 统计 生物化学 功率(物理) 物理 化学 量子力学 图像(数学) 基因
作者
Fei Xia,Kangan Wang,Jiajun Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:64: 107161-107161 被引量:34
标识
DOI:10.1016/j.est.2023.107161
摘要

State of health (SOH) and remaining useful life (RUL) prediction are crucial for battery management systems (BMS). However, accurate SOH and RUL prediction still need to be improved due to the complicated battery aging mechanism. This work combines incremental capacity analysis (ICA) and differential voltage analysis (DVA) based on the second-order RC model with an improved Bidirectional Gated Recurrent Unit (BiGRU) to develop SOH and RUL prediction framework. Firstly, the voltage is reconstructed through the second-order RC model to obtain the incremental capacity (IC) and differential voltage (DV) curves to avoid the influence of measurement noise and the complex parameter adjustment process in the filtering method on the IC and DV curves. Then, a new set of battery aging features are extracted from the reshaped IC and DV curves to improve SOH and RUL prediction accuracy and robustness. Next, the BiGRU method with attention mechanism (BiGRU-AM) is used to build the prediction models for battery aging features, SOH, and RUL. To reduce the impact of the capacity regeneration phenomenon, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method is used to decompose the SOH prediction results, and the decomposed residual is used as the input to improve the prediction accuracy of RUL. The uncertainty of RUL prediction results is analyzed by Monte Carlo (MC) simulation. Finally, the proposed method is verified by experimental battery data from Center for Advanced Life Cycle Engineering (CALCE) and Sandia National Laboratory. Experimental results show that the voltage reconstruction results based on the second-order RC model are applied to ICA and DVA analysis, effectively avoiding the influence of noise. The RMSE of voltage reconstruction is within 0.0006, and the Pearson correlation coefficient between the four aging features extracted from the reconstructed IC/DV curve and SOH is above 0.9. Moreover, this method has good robustness to the cell inconsistency, temperature uncertainty, and a satisfied generalization ability to different battery chemistries, which the maximum RUL predicted AE of CALCE and Sandia battery is within 10 and 5, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助坚强的严青采纳,获得10
3秒前
科研通AI2S应助曾梦采纳,获得10
5秒前
生锈的柳叶刀完成签到,获得积分10
6秒前
zs完成签到 ,获得积分10
6秒前
冰语心蓝完成签到,获得积分10
6秒前
京言完成签到,获得积分10
7秒前
Orange应助忧郁若菱采纳,获得10
9秒前
天天快乐应助yu采纳,获得10
9秒前
XHH完成签到 ,获得积分10
10秒前
今后应助EMMA采纳,获得50
10秒前
西鱼徐发布了新的文献求助10
10秒前
12秒前
合适的落落完成签到 ,获得积分20
15秒前
111完成签到,获得积分10
17秒前
17秒前
深情安青应助Yvonne采纳,获得10
20秒前
blUe发布了新的文献求助10
21秒前
21秒前
Alan完成签到,获得积分10
22秒前
科研通AI2S应助ohhhh采纳,获得10
23秒前
23秒前
学术菜鸡123完成签到,获得积分10
23秒前
不配.应助jxy09156采纳,获得10
24秒前
doudou完成签到,获得积分10
25秒前
26秒前
26秒前
斯文败类应助blUe采纳,获得10
27秒前
doudou发布了新的文献求助80
28秒前
30秒前
集力申发布了新的文献求助10
31秒前
32秒前
fanfanzzz发布了新的文献求助30
32秒前
欧阳静芙发布了新的文献求助10
32秒前
lynn发布了新的文献求助30
35秒前
36秒前
37秒前
吴梓楗完成签到,获得积分10
37秒前
37秒前
37秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393