亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Benchmark of embedding-based methods for accurate and transferable prediction of drug response

过度拟合 计算机科学 药物反应 水准点(测量) 机器学习 弹性网正则化 人工智能 预测建模 数据挖掘 深度学习 交叉验证 精密医学 药品 特征选择 人工神经网络 生物 地理 精神科 大地测量学 遗传学 心理学
作者
Peilin Jia,Ruifeng Hu,Zhongming Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:1
标识
DOI:10.1093/bib/bbad098
摘要

Prediction of therapy response has been a major challenge in cancer precision medicine due to the extensive tumor heterogeneity. Recently, several deep learning methods have been developed to predict drug response by utilizing various omics data. Most of them train models by using the drug-response screening data generated from cell lines and then use these models to predict response in cancer patient data. In this study, we focus on and evaluate deep learning methods using transcriptome data for the long-standing question of personalized drug-response prediction. We developed an embedding-based approach for drug-response prediction and benchmarked similar methods for their performance. For all methods, we used pretreatment transcriptome data to train models and then conducted a comprehensive evaluation and comparison of the models using cross-panels, cross-datasets and target genes. We further validated the methods using three independent datasets assessing multiple compounds for their predictive capability of drug response, survival outcome and cell line status. As a result, the methods building on gene embeddings had an overall competitive performance with reduced overfitting when we applied evaluation parameters for model fitting as well as the correlation with clinical outcomes in the validation data. We further developed an ensemble model to combine the results from the three most competitive methods for an overall prediction. Finally, we developed DrVAEN (https://bioinfo.uth.edu/drvaen), a user-friendly and easy-accessible web-server that hosts all these methods for drug-response prediction and model comparison for broad use in cancer research, method evaluation and drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zslg采纳,获得10
6秒前
14秒前
20秒前
32秒前
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
36秒前
zslg发布了新的文献求助10
37秒前
43秒前
50秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
1分钟前
畅快甜瓜发布了新的文献求助30
2分钟前
2分钟前
2分钟前
CodeCraft应助畅快甜瓜采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
搞怪柔完成签到,获得积分10
3分钟前
短巷完成签到 ,获得积分0
3分钟前
3分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
3分钟前
华仔应助畅快甜瓜采纳,获得30
3分钟前
激动的似狮完成签到,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615