Benchmark of embedding-based methods for accurate and transferable prediction of drug response

过度拟合 计算机科学 药物反应 水准点(测量) 机器学习 弹性网正则化 人工智能 预测建模 数据挖掘 深度学习 交叉验证 精密医学 药品 特征选择 人工神经网络 生物 大地测量学 地理 心理学 精神科 遗传学
作者
Peilin Jia,Ruifeng Hu,Zhongming Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:1
标识
DOI:10.1093/bib/bbad098
摘要

Prediction of therapy response has been a major challenge in cancer precision medicine due to the extensive tumor heterogeneity. Recently, several deep learning methods have been developed to predict drug response by utilizing various omics data. Most of them train models by using the drug-response screening data generated from cell lines and then use these models to predict response in cancer patient data. In this study, we focus on and evaluate deep learning methods using transcriptome data for the long-standing question of personalized drug-response prediction. We developed an embedding-based approach for drug-response prediction and benchmarked similar methods for their performance. For all methods, we used pretreatment transcriptome data to train models and then conducted a comprehensive evaluation and comparison of the models using cross-panels, cross-datasets and target genes. We further validated the methods using three independent datasets assessing multiple compounds for their predictive capability of drug response, survival outcome and cell line status. As a result, the methods building on gene embeddings had an overall competitive performance with reduced overfitting when we applied evaluation parameters for model fitting as well as the correlation with clinical outcomes in the validation data. We further developed an ensemble model to combine the results from the three most competitive methods for an overall prediction. Finally, we developed DrVAEN (https://bioinfo.uth.edu/drvaen), a user-friendly and easy-accessible web-server that hosts all these methods for drug-response prediction and model comparison for broad use in cancer research, method evaluation and drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
点点滴滴发布了新的文献求助10
4秒前
暮雨初晴完成签到 ,获得积分10
5秒前
俏皮的绝山完成签到,获得积分10
6秒前
6秒前
骄傲yy完成签到,获得积分10
7秒前
婷玉发布了新的文献求助10
7秒前
7秒前
科研通AI6应助江浔卿采纳,获得10
8秒前
nzsqaq完成签到,获得积分10
9秒前
9秒前
墨客完成签到 ,获得积分10
11秒前
net80yhm发布了新的文献求助10
11秒前
领导范儿应助细雨清心采纳,获得10
11秒前
咔嚓发布了新的文献求助10
12秒前
pluto应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
ryl完成签到 ,获得积分10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
BareBear应助科研通管家采纳,获得20
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
重要的强炫完成签到,获得积分20
14秒前
AN应助科研通管家采纳,获得30
14秒前
14秒前
BareBear应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
arizaki7应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
AN应助科研通管家采纳,获得30
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439