Artificial intelligence and prediction of cardiometabolic disease: Systematic review of model performance and potential benefits in indigenous populations

机器学习 人工智能 随机森林 决策树 土生土长的 接收机工作特性 支持向量机 计算机科学 预测能力 F1得分 预测建模 医学 生态学 生物 认识论 哲学
作者
Keunwoo Jeong,Alistair R. Mallard,Leanne Coombe,James Ward
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:139: 102534-102534 被引量:4
标识
DOI:10.1016/j.artmed.2023.102534
摘要

Indigenous peoples often have higher rates of morbidity and mortality associated with cardiometabolic disease (CMD) than non-Indigenous people and this may be even more so in urban areas. The use of electronic health records and expansion of computing power has led to mainstream use of artificial intelligence (AI) to predict the onset of disease in primary health care (PHC) settings. However, it is unknown if AI and in particular machine learning is used for risk prediction of CMD in Indigenous peoples.We searched peer-reviewed literature using terms associated with AI machine learning, PHC, CMD, and Indigenous peoples.We identified 13 suitable studies for inclusion in this review. Median total number of participants was 19,270 (range 911-2,994,837). The most common algorithms used in machine learning in this setting were support vector machine, random forest, and decision tree learning. Twelve studies used the area under the receiver operating characteristic curve (AUC) to measure performance. Two studies reported an AUC of >0.9. Six studies had an AUC score between 0.9 and 0.8, 4 studies had an AUC score between 0.8 and 0.7. 1 study reported an AUC score between 0.7 and 0.6. Risk of bias was observed in 10 (77 %) studies.AI machine learning and risk prediction models show moderate to excellent discriminatory ability over traditional statistical models in predicting CMD. This technology could help address the needs of urban Indigenous peoples by predicting CMD early and more rapidly than conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flora完成签到,获得积分10
刚刚
1秒前
CodeCraft应助聂立双采纳,获得10
1秒前
蝶恋花发布了新的文献求助10
4秒前
4秒前
咖喱发布了新的文献求助10
4秒前
单于无极完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
中学分子发布了新的文献求助30
8秒前
wtg完成签到,获得积分10
8秒前
脑洞疼应助袅袅采纳,获得10
8秒前
BowenShi发布了新的文献求助10
9秒前
10秒前
科目三应助蝶恋花采纳,获得10
10秒前
聂立双发布了新的文献求助10
10秒前
10秒前
SciGPT应助光纤陀螺采纳,获得10
12秒前
wtg发布了新的文献求助10
12秒前
12秒前
15秒前
shirai完成签到,获得积分10
16秒前
16秒前
18秒前
wmx发布了新的文献求助10
19秒前
19秒前
田様应助西瓜味可乐采纳,获得10
20秒前
CipherSage应助cookie采纳,获得10
21秒前
微笑不二完成签到,获得积分20
22秒前
杨杨杨发布了新的文献求助10
23秒前
zzz应助林希采纳,获得10
24秒前
24秒前
时光友岸完成签到,获得积分10
25秒前
微笑不二发布了新的文献求助10
26秒前
猪肉水饺发布了新的文献求助10
26秒前
cc应助真实的火车采纳,获得10
28秒前
拼搏冬瓜发布了新的文献求助10
28秒前
希望天下0贩的0应助vina采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454255
求助须知:如何正确求助?哪些是违规求助? 3049517
关于积分的说明 9017616
捐赠科研通 2737997
什么是DOI,文献DOI怎么找? 1501860
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692893