Artificial intelligence and prediction of cardiometabolic disease: Systematic review of model performance and potential benefits in indigenous populations

机器学习 人工智能 随机森林 决策树 土生土长的 接收机工作特性 支持向量机 计算机科学 预测能力 F1得分 预测建模 医学 生态学 哲学 认识论 生物
作者
Keunwoo Jeong,Alistair R. Mallard,Leanne Coombe,James Ward
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:139: 102534-102534 被引量:17
标识
DOI:10.1016/j.artmed.2023.102534
摘要

Indigenous peoples often have higher rates of morbidity and mortality associated with cardiometabolic disease (CMD) than non-Indigenous people and this may be even more so in urban areas. The use of electronic health records and expansion of computing power has led to mainstream use of artificial intelligence (AI) to predict the onset of disease in primary health care (PHC) settings. However, it is unknown if AI and in particular machine learning is used for risk prediction of CMD in Indigenous peoples.We searched peer-reviewed literature using terms associated with AI machine learning, PHC, CMD, and Indigenous peoples.We identified 13 suitable studies for inclusion in this review. Median total number of participants was 19,270 (range 911-2,994,837). The most common algorithms used in machine learning in this setting were support vector machine, random forest, and decision tree learning. Twelve studies used the area under the receiver operating characteristic curve (AUC) to measure performance. Two studies reported an AUC of >0.9. Six studies had an AUC score between 0.9 and 0.8, 4 studies had an AUC score between 0.8 and 0.7. 1 study reported an AUC score between 0.7 and 0.6. Risk of bias was observed in 10 (77 %) studies.AI machine learning and risk prediction models show moderate to excellent discriminatory ability over traditional statistical models in predicting CMD. This technology could help address the needs of urban Indigenous peoples by predicting CMD early and more rapidly than conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛仔完成签到 ,获得积分10
刚刚
老驴拉磨完成签到 ,获得积分10
1秒前
sponge完成签到 ,获得积分10
2秒前
zhang完成签到 ,获得积分10
5秒前
喝橙汁儿吗完成签到 ,获得积分10
5秒前
leibaozun完成签到 ,获得积分10
7秒前
Julie完成签到 ,获得积分10
8秒前
微笑芒果完成签到 ,获得积分0
9秒前
简爱完成签到 ,获得积分10
11秒前
falling_learning完成签到 ,获得积分10
11秒前
Ttttracy完成签到 ,获得积分10
14秒前
浮游应助guobin采纳,获得10
16秒前
熊雅完成签到,获得积分10
20秒前
烟花应助dhfify采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
乐枫完成签到 ,获得积分10
27秒前
君儿和闪电完成签到 ,获得积分10
29秒前
南星完成签到 ,获得积分10
29秒前
曦子完成签到 ,获得积分10
31秒前
魁梧的衫完成签到 ,获得积分10
32秒前
CJW完成签到 ,获得积分10
32秒前
Joanne完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
41秒前
Lett发布了新的文献求助10
44秒前
阿包完成签到 ,获得积分10
45秒前
roundtree完成签到 ,获得积分0
45秒前
乐观的星月完成签到 ,获得积分10
53秒前
dmq完成签到 ,获得积分10
53秒前
Lett完成签到,获得积分10
56秒前
57秒前
量子星尘发布了新的文献求助10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
从容的水壶完成签到 ,获得积分10
1分钟前
等待的幼晴完成签到,获得积分10
1分钟前
临风浩歌完成签到 ,获得积分10
1分钟前
123发布了新的文献求助20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
乐观的忆枫完成签到 ,获得积分10
1分钟前
甜甜的以筠完成签到 ,获得积分10
1分钟前
Criminology34应助亘木采纳,获得10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771649
捐赠科研通 4615679
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575