MVMM: Multiview Multimodal 3-D Object Detection for Autonomous Driving

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 分割
作者
Shangjie Li,Keke Geng,Guodong Yin,Ziwei Wang,Min Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 845-853 被引量:14
标识
DOI:10.1109/tii.2023.3263274
摘要

Object detection in 3-D space is a fundamental technology in the autonomous driving system. Among the published 3-D object detection methods, the single-modal methods based on point clouds have been widely studied. One problem exposed by these methods is that point clouds lack color and texture features. The limitation in conveying semantic information often leads to failures in detection. In contrast, the multimodal methods based on the image and point clouds fusion may solve this problem, but relevant research is not sufficient. In this work, a single-stage multiview multimodal 3-D object detector (MVMM) is proposed, which can naturally and efficiently extract semantic and geometric information from the image and point clouds. Specifically, the data-level fusion approach of point clouds coloring is used for combining information from the camera and LIDAR. Next, an encoder–decoder backbone is devised to extract features from colored points in the range view. Then, colored points are concatenated with the range view features, voxelized, and fed into the point view bridge for down-sampling. Finally, the down-sampled feature map is used by the bird's eye view backbone and the detection head for generating 3-D results based on predefined anchors. According to extensive experiments on the KITTI dataset, MVMM achieves competitive performance while runs at 27 FPS on the 1080 Ti GPU. Particularly, MVMM performs extremely well in difficult scenes (e.g., heavy occlusion and truncation) due to the understanding of fused information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助abc采纳,获得10
1秒前
1秒前
1秒前
颖颖完成签到,获得积分10
1秒前
xxy关注了科研通微信公众号
2秒前
沉默的驳发布了新的文献求助10
2秒前
any发布了新的文献求助10
2秒前
3秒前
小霞发布了新的文献求助10
3秒前
SciGPT应助大约在冬季采纳,获得10
3秒前
4秒前
4秒前
4秒前
sunny完成签到 ,获得积分10
4秒前
小背包完成签到 ,获得积分10
4秒前
jbq发布了新的文献求助10
4秒前
聪111完成签到,获得积分10
4秒前
Cris发布了新的文献求助10
5秒前
6秒前
7秒前
9秒前
孟孟发布了新的文献求助10
9秒前
sxh发布了新的文献求助10
9秒前
renbiyun关注了科研通微信公众号
10秒前
zgy1106完成签到,获得积分10
10秒前
11秒前
王粒伊完成签到,获得积分10
11秒前
13秒前
亦玉完成签到,获得积分10
14秒前
古月发布了新的文献求助10
14秒前
星辰大海应助fufu采纳,获得10
14秒前
一川完成签到,获得积分10
14秒前
zengwei完成签到,获得积分10
15秒前
糊糊完成签到,获得积分10
16秒前
xxy发布了新的文献求助10
17秒前
17秒前
18秒前
tjcu完成签到,获得积分10
18秒前
和谐续发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735307
求助须知:如何正确求助?哪些是违规求助? 5359844
关于积分的说明 15329214
捐赠科研通 4879525
什么是DOI,文献DOI怎么找? 2622047
邀请新用户注册赠送积分活动 1571209
关于科研通互助平台的介绍 1528039