MVMM: Multiview Multimodal 3-D Object Detection for Autonomous Driving

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 分割
作者
Shangjie Li,Keke Geng,Guodong Yin,Ziwei Wang,Min Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 845-853 被引量:14
标识
DOI:10.1109/tii.2023.3263274
摘要

Object detection in 3-D space is a fundamental technology in the autonomous driving system. Among the published 3-D object detection methods, the single-modal methods based on point clouds have been widely studied. One problem exposed by these methods is that point clouds lack color and texture features. The limitation in conveying semantic information often leads to failures in detection. In contrast, the multimodal methods based on the image and point clouds fusion may solve this problem, but relevant research is not sufficient. In this work, a single-stage multiview multimodal 3-D object detector (MVMM) is proposed, which can naturally and efficiently extract semantic and geometric information from the image and point clouds. Specifically, the data-level fusion approach of point clouds coloring is used for combining information from the camera and LIDAR. Next, an encoder–decoder backbone is devised to extract features from colored points in the range view. Then, colored points are concatenated with the range view features, voxelized, and fed into the point view bridge for down-sampling. Finally, the down-sampled feature map is used by the bird's eye view backbone and the detection head for generating 3-D results based on predefined anchors. According to extensive experiments on the KITTI dataset, MVMM achieves competitive performance while runs at 27 FPS on the 1080 Ti GPU. Particularly, MVMM performs extremely well in difficult scenes (e.g., heavy occlusion and truncation) due to the understanding of fused information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助duola123采纳,获得10
1秒前
绝世冰淇淋完成签到 ,获得积分10
3秒前
3秒前
完美世界应助whk采纳,获得10
4秒前
5秒前
慕青应助兔子采纳,获得10
7秒前
激情的健柏完成签到 ,获得积分10
7秒前
8秒前
加绒发布了新的文献求助30
9秒前
欢喜的晓霜完成签到 ,获得积分10
10秒前
yyh123发布了新的文献求助10
10秒前
意忆完成签到 ,获得积分10
11秒前
14秒前
滚滚完成签到,获得积分20
14秒前
现代期待完成签到,获得积分10
15秒前
细心难摧完成签到 ,获得积分10
16秒前
16秒前
灵巧夏彤完成签到,获得积分10
18秒前
LS-GENIUS完成签到,获得积分10
18秒前
活泼沫沫完成签到,获得积分10
18秒前
bynowcc完成签到 ,获得积分10
19秒前
pp‘s发布了新的文献求助10
19秒前
陈甜甜关注了科研通微信公众号
20秒前
同福发布了新的文献求助10
21秒前
21秒前
吕文晴发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
小二郎应助哎哟采纳,获得50
27秒前
28秒前
花汀酒完成签到 ,获得积分10
30秒前
30秒前
30秒前
流星雨发布了新的文献求助10
32秒前
脑洞疼应助吕文晴采纳,获得10
33秒前
33秒前
34秒前
sfafasfsdf完成签到,获得积分10
34秒前
阳光的梦寒完成签到 ,获得积分10
35秒前
ye发布了新的文献求助30
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600701
求助须知:如何正确求助?哪些是违规求助? 4686281
关于积分的说明 14842766
捐赠科研通 4677491
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505853
关于科研通互助平台的介绍 1471229