MVMM: Multiview Multimodal 3-D Object Detection for Autonomous Driving

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 分割
作者
Shangjie Li,Keke Geng,Guodong Yin,Ziwei Wang,Min Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 845-853 被引量:14
标识
DOI:10.1109/tii.2023.3263274
摘要

Object detection in 3-D space is a fundamental technology in the autonomous driving system. Among the published 3-D object detection methods, the single-modal methods based on point clouds have been widely studied. One problem exposed by these methods is that point clouds lack color and texture features. The limitation in conveying semantic information often leads to failures in detection. In contrast, the multimodal methods based on the image and point clouds fusion may solve this problem, but relevant research is not sufficient. In this work, a single-stage multiview multimodal 3-D object detector (MVMM) is proposed, which can naturally and efficiently extract semantic and geometric information from the image and point clouds. Specifically, the data-level fusion approach of point clouds coloring is used for combining information from the camera and LIDAR. Next, an encoder–decoder backbone is devised to extract features from colored points in the range view. Then, colored points are concatenated with the range view features, voxelized, and fed into the point view bridge for down-sampling. Finally, the down-sampled feature map is used by the bird's eye view backbone and the detection head for generating 3-D results based on predefined anchors. According to extensive experiments on the KITTI dataset, MVMM achieves competitive performance while runs at 27 FPS on the 1080 Ti GPU. Particularly, MVMM performs extremely well in difficult scenes (e.g., heavy occlusion and truncation) due to the understanding of fused information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HN_litchi_King完成签到,获得积分10
1秒前
小学生发布了新的文献求助10
1秒前
1秒前
无花果应助sdl采纳,获得10
2秒前
2秒前
酷波er应助panfan采纳,获得10
2秒前
3秒前
归仔发布了新的文献求助10
3秒前
4秒前
丘比特应助寸愿采纳,获得10
4秒前
64658应助专注乌冬面采纳,获得10
4秒前
4秒前
快乐小霉完成签到,获得积分10
4秒前
5秒前
sure完成签到,获得积分10
5秒前
YY发布了新的文献求助10
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
李健的小迷弟应助Decline采纳,获得10
7秒前
神勇的如音完成签到,获得积分10
7秒前
YuenwahHAHA完成签到,获得积分10
7秒前
7秒前
残酷无情猫猫头完成签到,获得积分10
8秒前
李爱国应助Elix采纳,获得10
8秒前
ZXCVB发布了新的文献求助10
9秒前
研友_VZG7GZ应助归仔采纳,获得10
9秒前
weilai发布了新的文献求助10
9秒前
我是大皇帝完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
10秒前
完美世界应助贝果小脑袋采纳,获得10
10秒前
10秒前
0911wxt完成签到,获得积分10
10秒前
Akim应助17采纳,获得30
11秒前
11秒前
飞云发布了新的文献求助10
11秒前
完美世界应助moyue采纳,获得10
11秒前
充电宝应助lucky采纳,获得10
12秒前
wansida完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224