MVMM: Multiview Multimodal 3-D Object Detection for Autonomous Driving

计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 分割
作者
Shangjie Li,Keke Geng,Guodong Yin,Ziwei Wang,Min Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 845-853 被引量:9
标识
DOI:10.1109/tii.2023.3263274
摘要

Object detection in 3-D space is a fundamental technology in the autonomous driving system. Among the published 3-D object detection methods, the single-modal methods based on point clouds have been widely studied. One problem exposed by these methods is that point clouds lack color and texture features. The limitation in conveying semantic information often leads to failures in detection. In contrast, the multimodal methods based on the image and point clouds fusion may solve this problem, but relevant research is not sufficient. In this work, a single-stage multiview multimodal 3-D object detector (MVMM) is proposed, which can naturally and efficiently extract semantic and geometric information from the image and point clouds. Specifically, the data-level fusion approach of point clouds coloring is used for combining information from the camera and LIDAR. Next, an encoder–decoder backbone is devised to extract features from colored points in the range view. Then, colored points are concatenated with the range view features, voxelized, and fed into the point view bridge for down-sampling. Finally, the down-sampled feature map is used by the bird's eye view backbone and the detection head for generating 3-D results based on predefined anchors. According to extensive experiments on the KITTI dataset, MVMM achieves competitive performance while runs at 27 FPS on the 1080 Ti GPU. Particularly, MVMM performs extremely well in difficult scenes (e.g., heavy occlusion and truncation) due to the understanding of fused information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊11完成签到,获得积分10
刚刚
烟雨梦兮关注了科研通微信公众号
刚刚
2秒前
Jasper应助青藤采纳,获得10
2秒前
Jayce完成签到,获得积分10
2秒前
2秒前
KEYANKEYAN发布了新的文献求助50
2秒前
熊11发布了新的文献求助10
3秒前
Aloha发布了新的文献求助20
4秒前
snnn完成签到,获得积分10
5秒前
帅气的绿凝完成签到,获得积分10
5秒前
葵小葵发布了新的文献求助10
5秒前
gfhdf完成签到,获得积分10
6秒前
6秒前
6秒前
moyu123完成签到,获得积分10
6秒前
我是老大应助典雅清采纳,获得10
8秒前
无花果应助大葱蘸酱采纳,获得30
8秒前
周必雷完成签到,获得积分10
8秒前
happiness完成签到,获得积分10
9秒前
9秒前
文丽完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助frxin采纳,获得10
10秒前
10秒前
萌萌哒发布了新的文献求助10
11秒前
水何澹澹完成签到,获得积分0
11秒前
大个应助viavia采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
兜兜发布了新的文献求助10
15秒前
sjl完成签到,获得积分10
16秒前
17秒前
17秒前
小赵吉星高照完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794