Risk Prediction Models for Sentinel Node Positivity in Melanoma

医学 前哨淋巴结 数据提取 梅德林 统计的 预测建模 荟萃分析 风险评估 统计 内科学 机器学习 计算机科学 癌症 乳腺癌 数学 计算机安全 政治学 法学
作者
Bryan Ma,Maharshi Gandhi,Sonia Czyz,Jocelyn Jia,Brian D. Rankin,Selena Osman,Eva Lindell Jonsson,Lynne Robertson,Laurie Parsons,Claire Temple‐Oberle
出处
期刊:JAMA Dermatology [American Medical Association]
标识
DOI:10.1001/jamadermatol.2025.0113
摘要

Importance There is a need to identify the best performing risk prediction model for sentinel lymph node biopsy (SLNB) positivity in melanoma. Objective To comprehensively review the characteristics and discriminative performance of existing risk prediction models for SLNB positivity in melanoma. Data Sources Embase and MEDLINE were searched from inception to May 1, 2024, for English language articles. Study Selection All studies that either developed or validated a risk prediction model (defined as any calculator that combined more than 1 variable to provide a patient estimate for probability of melanoma SLNB positivity) with a corresponding measure of model discrimination were considered for inclusion by 2 reviewers, with disagreements adjudicated by a third reviewer. Data Extraction and Synthesis Data were extracted in duplicate according to Data Extraction for Systematic Reviews of Prediction Modeling Studies, Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis, and Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines. Effects were pooled using random-effects meta-analysis. Main Outcome and Measures The primary outcome was the mean pooled C statistic. Heterogeneity was assessed using the I 2 statistic. Results In total, 23 articles describing the development of 21 different risk prediction models for SLNB positivity, 20 external validations of 8 different risk prediction models, and 9 models that included sufficient information to obtain individualized patient risk estimates in routine preprocedural clinical practice were identified. Among all risk prediction models, the pooled weighted C statistic was 0.78 (95% CI, 0.74-0.81) with significant heterogeneity ( I 2 = 97.4%) that was not explained in meta-regression. The Memorial Sloan Kettering Cancer Center and Melanoma Institute of Australia models were most frequently externally validated with both having strong and comparable discriminative performance (pooled weighted C statistic, 0.73; 95% CI, 0.69-0.78 vs pooled weighted C statistic, 0.70; 95% CI, 0.66-0.74). Discrimination was not significantly different between models that included gene expression profiles (pooled C statistic, 0.83; 95% CI, 0.76-0.90) and those that only used clinicopathologic features (pooled C statistic, 0.77; 95% CI, 0.73-0.81) ( P = .11). Conclusions and Relevance This systematic review and meta-analysis found several risk prediction models that have been externally validated with strong discriminative performance. Further research is needed to evaluate the associations of their implementation with preprocedural care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助rhrh0630采纳,获得10
刚刚
小饼干发布了新的文献求助10
刚刚
Shichao发布了新的文献求助10
1秒前
1秒前
wllom发布了新的文献求助10
1秒前
1秒前
1秒前
SciGPT应助sxpab采纳,获得10
2秒前
孤独的狼发布了新的文献求助10
2秒前
恍恍惚惚完成签到,获得积分10
2秒前
CodeCraft应助慧妞采纳,获得10
4秒前
可爱的函函应助likw23采纳,获得10
5秒前
PeiQi发布了新的文献求助10
5秒前
5秒前
优雅的念真完成签到,获得积分10
6秒前
mementomori发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
符又夏完成签到,获得积分10
8秒前
8秒前
9秒前
Shichao完成签到,获得积分10
9秒前
9秒前
11秒前
sxpab完成签到,获得积分10
11秒前
11秒前
sxpab发布了新的文献求助10
13秒前
mementomori完成签到,获得积分20
13秒前
Distance发布了新的文献求助10
13秒前
一般路过kamenride应助黑羊采纳,获得20
13秒前
sun1111完成签到 ,获得积分10
15秒前
董老师发布了新的文献求助10
15秒前
小禾子完成签到 ,获得积分10
15秒前
China发布了新的文献求助10
15秒前
16秒前
Irene完成签到 ,获得积分10
16秒前
16秒前
可爱玫瑰完成签到,获得积分10
16秒前
weilanhaian完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660135
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740763
捐赠科研通 2930886
什么是DOI,文献DOI怎么找? 1604684
邀请新用户注册赠送积分活动 757433
科研通“疑难数据库(出版商)”最低求助积分说明 734426