A cross-sectional study comparing machine learning and logistic regression techniques for predicting osteoporosis in a group at high risk of cardiovascular disease among old adults

医学 逻辑回归 横断面研究 骨质疏松症 疾病 康复 物理疗法 老年学 内科学 病理
作者
Yuyi Peng,Chi Zhang,Bo Zhou
出处
期刊:BMC Geriatrics [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12877-025-05840-w
摘要

Osteoporosis has become a significant public health concern that necessitates the application of appropriate techniques to calculate disease risk. Traditional methods, such as logistic regression,have been widely used to identify risk factors and predict disease probability. However,with the advent of advanced statistics techniques,machine learning models offer promising alternatives for improving prediction accuracy. What's more, studies that use risk factors and prediction models for osteoporosis in high-risk groups for cardiovascular diseases are scarce. We aimed to explore the risk factors and disease probability of osteoporosis by comparing logistic regression with four machine learning models. By doing so,we seek to provide insights into the most effective methods for osteoporosis risk assessment and contribute to the development of tailored prevention strategies at high risk of cardiovascular disease among old adults. We carried out a cross-sectional investigation of a high-risk group in cardiovascular patients. A logistic regression model and four common machine learning methods,DT,RF,SVM,and XGBoost were implemented to create a prediction model using information from 211 participants who met the inclusion requirements. Metrics for calibration and discrimination were used to compare the models. In total,211 patients were enrolled. The AUCs were 0.751 for the logistic regression model,0.72 for the SVM model,0.70 for the random forest model,0.697 for the model XGBoost,and 0.69 for the decision tree model. The logistic regression model outperforms other models for machine learning. According to the logistic regression model,there were nine predictors,including age,sex,glucose,TG (triglyceride),fracture history,stroke history,and CNV (copy number variation) nssv659422, and low-sodium salt. A well-calibrated result of 0.199 on the Brier scale. The findings of the internal validation demonstrated the high degree of repeatability of the prediction model employed in this study. In this study, we discovered that when predicting osteoporosis,a number of machine learning techniques fell short of logistic regression. In a specific population, we have innovatively developed a risk prediction model for osteoporosis events that integrates genetic and environmental factors, is an effective tool for assessing osteoporosis risk and can serve as the basis for specialized intervention approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到 ,获得积分10
2秒前
贤君发布了新的文献求助10
3秒前
缓慢思枫完成签到,获得积分10
4秒前
5秒前
cdercder应助HD采纳,获得10
5秒前
努力熊熊完成签到,获得积分10
6秒前
7秒前
lyy66964193完成签到,获得积分10
8秒前
10秒前
小白完成签到,获得积分10
11秒前
酸菜发布了新的文献求助10
12秒前
顾矜应助陌陌采纳,获得30
12秒前
liz完成签到,获得积分10
13秒前
三岁半发布了新的文献求助10
14秒前
科研通AI5应助白鸽鸽采纳,获得10
15秒前
毛豆爱睡觉完成签到,获得积分10
16秒前
16秒前
嘉幸的发布了新的文献求助10
16秒前
充电宝应助贤君采纳,获得10
18秒前
劲秉应助开放的千秋采纳,获得10
19秒前
科研通AI5应助粗心的chen采纳,获得10
22秒前
22秒前
25秒前
Orange应助岑梨愁采纳,获得10
28秒前
29秒前
29秒前
一颗梨完成签到,获得积分10
29秒前
30秒前
青苔发布了新的文献求助10
33秒前
落寞臻完成签到,获得积分10
33秒前
34秒前
sdniuidifod发布了新的文献求助10
34秒前
张瀚文发布了新的文献求助10
34秒前
HD完成签到,获得积分10
35秒前
老温完成签到,获得积分10
36秒前
36秒前
科研通AI5应助yang采纳,获得10
37秒前
一颗梨发布了新的文献求助10
40秒前
请叫我风吹麦浪完成签到,获得积分0
42秒前
怡萱完成签到,获得积分10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290