强化学习
计算机科学
无线
能量收集
服务质量
软件部署
频道(广播)
实时计算
计算机网络
能量(信号处理)
人工智能
电信
统计
数学
操作系统
作者
Haoran Peng,Li‐Chun Wang
标识
DOI:10.1109/twc.2023.3245820
摘要
Integrating unmanned aerial vehicles with RIS (UAV–RIS) can offer ubiquitous deployment services in communication-disabled areas, but is limited by the on-board energy of the UAVs. In this paper, a novel energy harvesting (EH) scheme on top of the UAV–RIS system, called EH-RIS scheme, is developed for the next generation high performance wireless system. The proposed EH-RIS scheme extends the simultaneous wireless information and power transfer (SWIPT) system by splitting the passive reflected arrays on the geometric space for transporting information and harvesting energy simultaneously. However, pedestrian mobility, and rapid channel changes post challenges to efficient resource allocation in wireless systems. Thus, a robust deep reinforcement learning (DRL)-based algorithm is developed to improve the proposed EH-RIS scheme for guaranteeing the quality of service (QoS) under dynamic wireless environments. The simulation results demonstrate the effectiveness and efficiency of the proposed robust DRL-based EH-RIS system, which not only outperform the existing state-of-the-art solutions but also approach to the performance of the exhaustive search method.
科研通智能强力驱动
Strongly Powered by AbleSci AI