A systematic review of neurophysiological sensing for the assessment of acute pain

计算机科学 杠杆(统计) 系统回顾 新兴技术 人工智能 疼痛评估 数据科学 梅德林 医学 疼痛管理 物理疗法 政治学 法学
作者
Raul Fernandez Rojas,Nicholas A. T. Brown,Gordon Waddington,Roland Goecke
出处
期刊:npj digital medicine [Springer Nature]
卷期号:6 (1) 被引量:20
标识
DOI:10.1038/s41746-023-00810-1
摘要

Abstract Pain is a complex and personal experience that presents diverse measurement challenges. Different sensing technologies can be used as a surrogate measure of pain to overcome these challenges. The objective of this review is to summarise and synthesise the published literature to: (a) identify relevant non-invasive physiological sensing technologies that can be used for the assessment of human pain, (b) describe the analytical tools used in artificial intelligence (AI) to decode pain data collected from sensing technologies, and (c) describe the main implications in the application of these technologies. A literature search was conducted in July 2022 to query PubMed, Web of Sciences, and Scopus. Papers published between January 2013 and July 2022 are considered. Forty-eight studies are included in this literature review. Two main sensing technologies (neurological and physiological) are identified in the literature. The sensing technologies and their modality (unimodal or multimodal) are presented. The literature provided numerous examples of how different analytical tools in AI have been applied to decode pain. This review identifies different non-invasive sensing technologies, their analytical tools, and the implications for their use. There are significant opportunities to leverage multimodal sensing and deep learning to improve accuracy of pain monitoring systems. This review also identifies the need for analyses and datasets that explore the inclusion of neural and physiological information together. Finally, challenges and opportunities for designing better systems for pain assessment are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
2秒前
2秒前
2秒前
星辰大海应助石幼蓉采纳,获得10
3秒前
4秒前
ppp完成签到 ,获得积分10
5秒前
6秒前
aftertaste完成签到,获得积分10
8秒前
可意完成签到 ,获得积分10
9秒前
10秒前
伍德发布了新的文献求助10
10秒前
kingmin完成签到,获得积分10
12秒前
Reeee发布了新的文献求助10
13秒前
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
16秒前
dreamode应助科研通管家采纳,获得10
16秒前
云烟成雨应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
16秒前
搜集达人应助游戏人间采纳,获得10
17秒前
17秒前
Brian_Fang完成签到,获得积分10
18秒前
伍德完成签到,获得积分10
18秒前
19秒前
19秒前
21秒前
23秒前
华仔应助三桥采纳,获得20
23秒前
23秒前
24秒前
lili发布了新的文献求助40
25秒前
ding应助小何采纳,获得10
25秒前
CodeCraft应助Mr杜采纳,获得10
26秒前
乐观又晴完成签到,获得积分10
27秒前
bkagyin应助小凯采纳,获得10
27秒前
nilu发布了新的文献求助10
27秒前
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466441
求助须知:如何正确求助?哪些是违规求助? 3059219
关于积分的说明 9065619
捐赠科研通 2749724
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696780