Temperature Prediction for Expressway Pavement Icing in Winter Based on XGBoost–LSTNet Variable Weight Combination Model

环境科学 露点 均方误差 气象学 相对湿度 相关系数 统计 数学 地理
作者
Ning Zhang,Tianyi Mao,Haotian Chen,Lu Lv,Yangchun Wang,Ying Yan
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (7) 被引量:3
标识
DOI:10.1061/jtepbs.teeng-7670
摘要

Ice cover on pavement may reduce the road adhesion coefficient and increase the crash risks, which might result in more traffic crashes. The primary factor utilized to assess whether the wet pavement is icy or not is the pavement temperature. Therefore, forecasting pavement temperature is an effective method to judge road conditions and improve traffic safety. This paper proposes a combination model based on the extreme gradient boosting (XGBoost) model and long- and short-term time-series network (LSTNet) model to predict pavement temperature. Pavement temperature and meteorological data were collected for the cities along the Shandong part of the Beijing-Taipei Expressway (G3). In this study, nine meteorological variables were used. Subsequently, after correlation analysis, five variables, including air temperature, dew point temperature, relative humidity, evaporation, and potential evaporation, were selected for prediction. The method proposed in this study comprises the following steps. First, the XGBoost and the LSTNet models are respectively formulated based on the time-varying characteristics of pavement temperatures. Then, using the preset weight of the variable, the XGBoost model is used for preliminary prediction to add features. Finally, the experimental analysis is performed on the Qihe data set after the two models have been integrated using the inverse variance method. As revealed by the experimental results, the mean absolute error (MAE) and root-mean-square error (RMSE) of the proposed XGBoost-LSTNet model are 0.8235 and 1.2412, respectively. Compared with the long short-term memory (LSTM) model, random forest (RF) model, XGBoost model, and LSTNet model, the XGBoost-LSTNet model proposed in this paper has higher accuracy. The study's findings can successfully increase wintertime expressway traffic safety and serve as a guide for managing maintenance and preventing icing-related accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
2秒前
2秒前
生姜批发刘哥完成签到 ,获得积分10
2秒前
英俊的铭应助此晴可待采纳,获得10
2秒前
飘逸的山柏完成签到 ,获得积分10
3秒前
一只凡凡发布了新的文献求助10
3秒前
阉太狼完成签到,获得积分10
4秒前
hurry完成签到 ,获得积分10
4秒前
脑洞疼应助bie123采纳,获得10
5秒前
清脆的棒球完成签到 ,获得积分10
6秒前
7秒前
如约而至发布了新的文献求助10
7秒前
Lzt完成签到,获得积分10
7秒前
zzupc应助花花采纳,获得10
7秒前
sg完成签到 ,获得积分10
8秒前
8秒前
lanye发布了新的文献求助10
8秒前
EMMACao发布了新的文献求助10
9秒前
9秒前
漫步云端完成签到 ,获得积分10
9秒前
xkkoala完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI2S应助sunsun采纳,获得10
11秒前
Azaw完成签到,获得积分20
11秒前
Henry完成签到 ,获得积分10
11秒前
SHUAI完成签到,获得积分10
11秒前
12秒前
梦会故乡发布了新的文献求助10
13秒前
幸福尔珍发布了新的文献求助10
13秒前
CipherSage应助不想长大采纳,获得10
14秒前
shanshanlaichi完成签到,获得积分20
15秒前
15秒前
SciGPT应助轻松乾采纳,获得10
15秒前
听风完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
冯科完成签到 ,获得积分10
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408656
求助须知:如何正确求助?哪些是违规求助? 3012730
关于积分的说明 8855601
捐赠科研通 2699976
什么是DOI,文献DOI怎么找? 1480215
科研通“疑难数据库(出版商)”最低求助积分说明 684219
邀请新用户注册赠送积分活动 678543