Identification of potent anti-fibrinolytic compounds against plasminogen and tissue-type plasminogen activator employingin silicoapproaches

克林格尔域 纤溶酶 丝氨酸蛋白酶 纤溶酶原激活剂 纤溶 化学 尿激酶 组织纤溶酶原激活剂 蛋白酶 对接(动物) 配体(生物化学) 生物化学 生物 受体 护理部 内分泌学 精神科 医学 遗传学
作者
Suparna Banerjee,Yeshwanth Mahesh,Dhamodharan Prabhu,K. Sekar,Prosenjit Sen
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:42 (6): 3204-3222 被引量:1
标识
DOI:10.1080/07391102.2023.2213343
摘要

AbstractAbstractThe zymogen protease Plasminogen (Plg) and its active form plasmin (Plm) carry out important functions in the blood clot disintegration (breakdown of fibrin fibers) process. Inhibition of plasmin effectively reduces fibrinolysis to circumvent heavy bleeding. Currently, available Plm inhibitor tranexamic acid (TXA) used for treating severe hemorrhages is associated with an increased incidence of seizures which in turn were traced to gamma-aminobutyric acid antagonistic activity (GABAa) in addition to having multiple side effects. Fibrinolysis can be suppressed by targeting the three important protein domains: the kringle-2 domain of tissue plasminogen activator, the kringle-1 domain of plasminogen, and the serine protease domain of plasminogen. In the present study, one million molecules were screened from the ZINC database. These ligands were docked to their respective protein targets using Autodock Vina, Schrödinger Glide, and ParDOCK/BAPPL+. Thereafter, the drug-likeness properties of the ligands were evaluated using Discovery Studio 3.5. Subsequently, we subjected the protein-ligand complexes to molecular dynamics simulation of 200 ns in GROMACS. The identified ligands P76(ZINC09970930), C97(ZINC14888376), and U97(ZINC11839443) for each protein target are found to impart higher stability and greater compactness to the protein-ligand complexes. Principal component analysis (PCA) implicates, that the identified ligands occupy smaller phase space, form stable clusters, and provide greater rigidity to the protein-ligand complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis reveals that P76, C97, and U97 exhibit better binding free energy (ΔG) when compared to that of the standard ligands. Thus, our findings can be useful for the development of promising anti-fibrinolytic agents.Communicated by Ramaswamy H. SarmaKeywords: plasminstructure-based virtual screeningmolecular dockingmolecular dynamics simulationprincipal component analysis (PCA)Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) AcknowledgmentsThe authors owe sincere thanks to the Department of Science and Technology, Government of India, Indian Association for the Cultivation of Science, Kolkata, India, and the Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India for providing all the necessary facilities. Suparna Banerjee gratefully acknowledges the support of the Council of Scientific & Industrial Research, Govt. of India for fellowship.Disclosure statementNo potential conflict of interest was reported by the authors.Authorship contributionSuparna Banerjee: Investigation, Data curation, Formal analysis, Validation, Visualization, Writing - original draft, review& editing. Yeshwanth M.: Investigation, Data curation, Formal analysis, Validation, Visualization, Writing - original draft, review& editing. D. Prabhu: Data curation, Formal analysis, Visualization, review& editing. K. Sekar: Supervision, Prosenjit Sen: Conceptualization, Supervision, Writing - review& editing. Suparna Banerjee and Yeshwanth M. have contributed equally to the work.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助errui采纳,获得10
1秒前
Lucas应助淡然向松采纳,获得10
3秒前
精明元霜完成签到,获得积分10
3秒前
建新应助KEYANTUTU采纳,获得10
4秒前
4秒前
江睿曦完成签到,获得积分10
5秒前
6秒前
科研通AI5应助归海诗珊采纳,获得30
8秒前
9秒前
科研通AI5应助Suyi采纳,获得30
10秒前
王可发布了新的文献求助10
10秒前
11秒前
科研通AI5应助瑾玉采纳,获得10
11秒前
啦啦啦发布了新的文献求助10
12秒前
12秒前
吃肯德基发布了新的文献求助10
12秒前
13秒前
kk完成签到,获得积分20
14秒前
16秒前
kk发布了新的文献求助30
16秒前
12完成签到 ,获得积分10
16秒前
Ava应助樱桃肉丸子采纳,获得10
17秒前
17秒前
淡然向松发布了新的文献求助10
17秒前
18秒前
李佰科完成签到,获得积分10
18秒前
18秒前
errui发布了新的文献求助10
18秒前
18秒前
大煎饼果子完成签到,获得积分10
19秒前
19秒前
科研通AI5应助精明元霜采纳,获得200
19秒前
20秒前
20秒前
Leolefroy完成签到,获得积分10
21秒前
21秒前
科研通AI5应助贪玩的书南采纳,获得10
21秒前
21秒前
setid完成签到 ,获得积分10
22秒前
zstyry9998完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496552
求助须知:如何正确求助?哪些是违规求助? 3081396
关于积分的说明 9167155
捐赠科研通 2774333
什么是DOI,文献DOI怎么找? 1522416
邀请新用户注册赠送积分活动 705915
科研通“疑难数据库(出版商)”最低求助积分说明 703173