Construction of porous biphasic ZnTiO3 rods as anode materials for high-performance Li-ion batteries driven by a hybrid Li storage mechanism

阳极 材料科学 电化学 涂层 化学工程 多孔性 电极 纳米技术 复合材料 冶金 化学 物理化学 病理 替代医学 工程类 医学
作者
Tingting Wei,P. Peng,Shao-Jie Yang,Peng‐Fei Wang,Ting‐Feng Yi
出处
期刊:Applied Surface Science [Elsevier]
卷期号:620: 156805-156805 被引量:4
标识
DOI:10.1016/j.apsusc.2023.156805
摘要

Titanium-based oxide materials have become a potential candidate anode material for power LIBs due to its good structural stability and high safety performance. However, poor conductivity of titanium-based anode materials hinders their practical application. To solve this issue, porous ZnTiO3 rods and ZnTiO3/polytopamine (PDA) composites with excellent electrochemical properties were synthesized by solvothermal method and simple chemical polymerization in this work. The diameter of ZnTiO3 and ZnTiO3/PDA rods is around 800 nm. The ex-situ XRD and electrochemical characterization confirm that ZnTiO3 has intercalation, conversion and alloying reaction mechanism, resulting in higher capacity than most titanium-based anode materials. The ZnTiO3/PDA (6.2 wt%) anode possesses excellent cycling stability, which can provide a specific charge capacity of 467.1 mAh·g−1 after 500 cycles at 1000 mA·g−1. Moreover, after cycling, most of the ZnTiO3/PDA (6.2 wt%) still maintained the morphology of complete porous rods, indicating moderate PDA coating can significantly mitigate the volume change during the electrochemical reaction process and improve electrochemical properties. The EIS results demonstrate PDA coating can enhance the electrochemical reaction activity of ZnTiO3 materials. Therefore, the PDA coating is an effective approach to enhance the electrochemical performance of titanium-based anode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强擎汉完成签到,获得积分10
刚刚
小破网完成签到 ,获得积分10
1秒前
超级路人发布了新的文献求助10
1秒前
3秒前
酷波er应助假面采纳,获得10
4秒前
小丛雨完成签到,获得积分10
4秒前
5秒前
华仔应助白河采纳,获得30
5秒前
小王完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
毛豆应助义气绿柳采纳,获得10
6秒前
温暖眼神完成签到,获得积分10
7秒前
无花果应助飞跃采纳,获得10
7秒前
8秒前
麦秋发布了新的文献求助10
8秒前
8秒前
打打应助超级路人采纳,获得10
8秒前
9秒前
天天快乐应助1234采纳,获得10
9秒前
orixero应助guoguo采纳,获得30
9秒前
10秒前
11秒前
123应助坚强擎汉采纳,获得50
11秒前
盈盈发布了新的文献求助10
14秒前
14秒前
向春山发布了新的文献求助10
14秒前
超级路人完成签到,获得积分10
15秒前
16秒前
16秒前
旺仔小馒头完成签到,获得积分10
17秒前
zk001发布了新的文献求助20
18秒前
bkagyin应助宫冷雁采纳,获得10
19秒前
20秒前
20秒前
20秒前
liuhui发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
1234发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106