Classification and diagnosis of cervical lesions based on colposcopy images using deep fully convolutional networks: A man-machine comparison cohort study

阴道镜检查 医学 卷积神经网络 队列 宫颈癌 放射科 人工智能 癌症 病理 内科学 计算机科学
作者
Binhua Dong,Huifeng Xue,Ye Li,Ping Li,Jiancui Chen,Tao Zhang,Lihua Chen,Diling Pan,Peizhong Liu,Pengming Sun
出处
期刊:Fundamental research [Elsevier BV]
标识
DOI:10.1016/j.fmre.2022.09.032
摘要

Colposcopy is an important technique in the diagnosis of cervical cancer. The development of computer-aided diagnosis methods can mitigate the shortage of colposcopists and improve the accuracy and efficiency of colposcopy examinations in China. This study proposes the Dense-U-Net model for colposcopy image recognition. This was a man–machine comparison cohort study. It presents a novel artificial intelligence (AI) model for the diagnosis of cervical lesions through colposcopy images using a Dense-U-Net image semantic segmentation algorithm. The Dense-U-Net model was created by applying the methods of “deepening the network structure,” “applying dropout” and “max pooling.” Moreover, image-based and population-based diagnostic performances of the AI algorithm and physicians with different levels of specialist experience were compared. In total, 2,475 participants were recruited, and 13,084 colposcopy images were included in this study. The diagnostic accuracy of the Dense-U-Net model increased significantly with increasing colposcopy images per patient. As the number of images in the training set increased, the diagnostic accuracy of the Dense-U-Net model for cervical intraepithelial neoplasm 3 or worse (CIN3+) diagnosis increased (P=0.035). The rate of diagnostic accuracy (0.89 vs 0.85, P<0.001) of CIN3+ lesions using the Dense-U-Net model was higher than that of expert colposcopists, and the missed diagnosis (0.06 vs 0.07, P=0.002) and misdiagnosis (0.05 vs 0.08, P<0.001) were lower. Moreover, Dense-U-Net is more accurate in diagnosing the type III cervical transformation zone, which is difficult to diagnose by experts (P<0.001). The Dense-U-Net model also showed higher diagnostic accuracy for CIN3+ in an independent test set (P<0.001). To diagnose the same 870 test images, the Dense-U-Net system took 1.76 ± 0.09 min, while the expert, senior, and junior colposcopists took 716.3 ± 49.76, 892.1 ± 92.30, and 3034.7 ± 259.51 min, respectively. The study successfully built a reliable, quick, and effective Dense-U-Net model to assist with colposcopy examinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助坚强幼晴采纳,获得10
刚刚
cdercder应助蛙八音采纳,获得20
1秒前
轻松傲薇完成签到,获得积分10
2秒前
3秒前
李健的小迷弟应助十里采纳,获得10
3秒前
4秒前
5秒前
6秒前
36456657应助mara采纳,获得10
6秒前
6秒前
六月六发布了新的文献求助10
6秒前
粥小周发布了新的文献求助10
7秒前
云落发布了新的文献求助10
8秒前
Akim应助俭朴的世立采纳,获得10
9秒前
树圆完成签到,获得积分10
9秒前
jing发布了新的文献求助10
10秒前
10秒前
小超发布了新的文献求助20
10秒前
六月六完成签到,获得积分10
12秒前
12秒前
妩媚的初晴完成签到,获得积分10
13秒前
14秒前
粥小周完成签到,获得积分10
14秒前
14秒前
15秒前
YJ888发布了新的文献求助10
15秒前
苏卿应助lsx采纳,获得10
15秒前
HJJHJH发布了新的文献求助10
15秒前
Jerry完成签到,获得积分10
16秒前
16秒前
今后应助韩麒嘉采纳,获得10
16秒前
星辰大海应助凶狠的洋葱采纳,获得10
16秒前
18秒前
jing完成签到,获得积分10
18秒前
坚果爱吃坚果完成签到,获得积分10
19秒前
萧晓发布了新的文献求助80
19秒前
我是大美女完成签到,获得积分10
19秒前
20秒前
miao发布了新的文献求助10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652117
求助须知:如何正确求助?哪些是违规求助? 3216210
关于积分的说明 9711480
捐赠科研通 2924083
什么是DOI,文献DOI怎么找? 1601537
邀请新用户注册赠送积分活动 754218
科研通“疑难数据库(出版商)”最低求助积分说明 732987