Multimodal machine learning in precision health: A scoping review

机器学习 人工智能 计算机科学 模式治疗法 心理学 心理治疗师
作者
Adrienne Kline,Hanyin Wang,Yikuan Li,Saya Rene Dennis,Meghan R. Hutch,Zhenxing Xu,Fei Wang,Feixiong Cheng,Yuan Luo
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:5 (1) 被引量:203
标识
DOI:10.1038/s41746-022-00712-8
摘要

Abstract Machine learning is frequently being leveraged to tackle problems in the health sector including utilization for clinical decision-support. Its use has historically been focused on single modal data. Attempts to improve prediction and mimic the multimodal nature of clinical expert decision-making has been met in the biomedical field of machine learning by fusing disparate data. This review was conducted to summarize the current studies in this field and identify topics ripe for future research. We conducted this review in accordance with the PRISMA extension for Scoping Reviews to characterize multi-modal data fusion in health. Search strings were established and used in databases: PubMed, Google Scholar, and IEEEXplore from 2011 to 2021. A final set of 128 articles were included in the analysis. The most common health areas utilizing multi-modal methods were neurology and oncology. Early fusion was the most common data merging strategy. Notably, there was an improvement in predictive performance when using data fusion. Lacking from the papers were clear clinical deployment strategies, FDA-approval, and analysis of how using multimodal approaches from diverse sub-populations may improve biases and healthcare disparities. These findings provide a summary on multimodal data fusion as applied to health diagnosis/prognosis problems. Few papers compared the outputs of a multimodal approach with a unimodal prediction. However, those that did achieved an average increase of 6.4% in predictive accuracy. Multi-modal machine learning, while more robust in its estimations over unimodal methods, has drawbacks in its scalability and the time-consuming nature of information concatenation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拼搏语薇发布了新的文献求助10
2秒前
可可豆完成签到 ,获得积分10
3秒前
Hhh完成签到,获得积分20
4秒前
4秒前
caojun发布了新的文献求助10
4秒前
慈祥的煎蛋完成签到,获得积分10
7秒前
可靠向日葵完成签到,获得积分10
9秒前
9秒前
李子敬完成签到,获得积分10
9秒前
Ec_w完成签到,获得积分10
9秒前
14秒前
千里江山一只蝇完成签到,获得积分10
14秒前
yulian发布了新的文献求助10
18秒前
科研通AI2S应助Haliwily采纳,获得10
18秒前
19秒前
结实的啤酒完成签到 ,获得积分10
20秒前
21秒前
喜悦的威完成签到,获得积分10
21秒前
23秒前
taodage发布了新的文献求助10
23秒前
顾矜应助yulian采纳,获得10
24秒前
冯家源完成签到,获得积分10
25秒前
瑶瑶发布了新的文献求助10
26秒前
研友_Lmb15n完成签到,获得积分10
27秒前
ztttttt发布了新的文献求助10
28秒前
多多完成签到,获得积分10
28秒前
28秒前
34秒前
瑶瑶完成签到,获得积分20
36秒前
杨111完成签到 ,获得积分10
40秒前
夏天关注了科研通微信公众号
40秒前
AlinaLee应助ztttttt采纳,获得10
40秒前
yulian驳回了xzy998应助
44秒前
桐桐完成签到,获得积分0
48秒前
50秒前
观自在完成签到 ,获得积分0
51秒前
义气若冰完成签到,获得积分10
52秒前
czq完成签到 ,获得积分10
55秒前
57秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675468
求助须知:如何正确求助?哪些是违规求助? 3230256
关于积分的说明 9789554
捐赠科研通 2941210
什么是DOI,文献DOI怎么找? 1612333
邀请新用户注册赠送积分活动 761100
科研通“疑难数据库(出版商)”最低求助积分说明 736633