Predicting Acute Onset of Heart Failure Complicating Acute Coronary Syndrome: An Explainable Machine Learning Approach

医学 急性冠脉综合征 逻辑回归 心力衰竭 内科学 预测值 心脏病学 曲线下面积 置信区间 机器学习 接收机工作特性 重症监护医学 心肌梗塞 计算机科学
作者
Hao Ren,Yu Sun,Chenyu Xu,Ming Fang,Zhongzhi Xu,Fengshi Jing,Weilan Wang,Gary Tse,Qingpeng Zhang,Weibin Cheng,Wen Jin
出处
期刊:Current Problems in Cardiology [Elsevier]
卷期号:48 (2): 101480-101480 被引量:14
标识
DOI:10.1016/j.cpcardiol.2022.101480
摘要

Patients with acute coronary syndrome (ACS) are at high risk of heart failure (HF). Early prediction and management of HF among ACS patients are essential to provide timely and cost-effective care. The aim of this study is to train and evaluate a machine learning model to predict the acute onset of HF subsequent to ACS. A total of 1,028 patients with ACS admitted to Guangdong Second Provincial General Hospital between October 2019 and May 2022 were included in this study. 128 clinical features were ranked using Shapley additive exPlanations (SHAP) values and the top 20% of features were selected for building a balanced random forest (BRF) model. We compared the discriminatory capability of BRF with linear logistic regression (LLR). In the hold-out test set, the BRF model predicted subsequent HF with areas under the curve (AUC) of 0.76 (95% CI: 0.75-0.77), sensitivity of 0.97 (95% CI: 0.96-0.97), positive predictive value (PPV) of 0.73 (95% CI: 0.72-0.74), negative predictive value (NPV) of 0.63 (95% CI: 0.60-0.66), and accuracy of 0.73 (95% CI: 0.72-0.73), respectively. BRF outperforms linear logistic regression by 15.6% in AUC, 3.0% in sensitivity, and 60.8% in NPV. End-to-end machine learning approaches can predict the acute onset of HF following ACS with high prediction accuracy. This proof-of-concept study has the potential to substantially advance the management of ACS patients by utilizing the machine learning model as a triage tool to automatically identify clinically significant patients allowing for prioritization of interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助zjy采纳,获得10
1秒前
wwyyccc发布了新的文献求助10
2秒前
贪玩豪完成签到,获得积分10
2秒前
乐观无心发布了新的文献求助10
4秒前
xionggege发布了新的文献求助10
4秒前
5秒前
研究水合物的小白完成签到 ,获得积分10
5秒前
派大星完成签到,获得积分10
6秒前
哎呦哎完成签到,获得积分10
6秒前
Once发布了新的文献求助10
7秒前
7秒前
陶醉信封完成签到,获得积分10
8秒前
蓝色完成签到,获得积分10
9秒前
10秒前
鹿叽叽完成签到,获得积分10
10秒前
sunny发布了新的文献求助10
10秒前
曦子曦子发布了新的文献求助10
14秒前
15秒前
Oyster7应助开心的渊思采纳,获得10
15秒前
huke完成签到 ,获得积分10
16秒前
傲娇文博发布了新的文献求助10
20秒前
22秒前
23秒前
朱可芯完成签到,获得积分10
23秒前
worldcloud发布了新的文献求助30
23秒前
23秒前
25秒前
25秒前
26秒前
岁月轮回发布了新的文献求助10
26秒前
CartGo发布了新的文献求助10
26秒前
情怀应助James采纳,获得10
27秒前
朱可芯发布了新的文献求助10
28秒前
克劳德完成签到,获得积分10
28秒前
32秒前
32秒前
33秒前
ding应助语上采纳,获得10
33秒前
杏梨完成签到,获得积分10
33秒前
Bella发布了新的文献求助30
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572635
求助须知:如何正确求助?哪些是违规求助? 3142841
关于积分的说明 9449037
捐赠科研通 2844177
什么是DOI,文献DOI怎么找? 1563386
邀请新用户注册赠送积分活动 731723
科研通“疑难数据库(出版商)”最低求助积分说明 718679