Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation

电池(电) 计算机科学 点(几何) 电池容量 锂离子电池 淡出 降级(电信) 可靠性工程 分类 泄流深度 模拟 人工智能 汽车工程 工程类 功率(物理) 电信 数学 物理 几何学 量子力学 情报检索 操作系统
作者
Suyeon Sohn,Ha-Eun Byun,Jay H. Lee
出处
期刊:Applied Energy [Elsevier]
卷期号:328: 120204-120204 被引量:2
标识
DOI:10.1016/j.apenergy.2022.120204
摘要

Accurate monitoring of capacity degradation of a lithium-ion battery is important as it enables the user to manage the battery usage for optimal performance/lifetime and to take preemptive measures against any potential explosion or fire. Battery capacity fades gradually through repetitive charging and discharging until it reaches the so called ‘knee-point’, after which it goes through rapid and irreversible deterioration to reach its end-of-life. It is crucial to forecast the knee-point early and accurately for safety and economic use of the battery. Machine learning based methods have been used to predict the knee-point with early cycles cell data. Despite some notable progress made, the existing methods make the unrealistic assumption of constant cycle-to-cycle charge/discharge operation. In this study, a novel two-stage deep learning method is proposed for online knee-point prediction under variable battery usage. A CNN-based model extracts temporal features across past and current cycles to sort out those that should be monitored closely for near-term failures, and then predict the number of cycles left to reach the knee-point for them. The proposed method extracts features from time-series data and thus reflects dynamic changes in battery properties, resulting in improved prediction performance under realistic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助yi采纳,获得10
刚刚
刚刚
lhx关闭了lhx文献求助
1秒前
1秒前
206拧绳哥发布了新的文献求助10
1秒前
英俊的铭应助qq采纳,获得10
2秒前
橙月发布了新的文献求助10
3秒前
YRY完成签到 ,获得积分10
3秒前
小文发布了新的文献求助10
3秒前
4秒前
isabelwy发布了新的文献求助10
4秒前
SciGPT应助Lang777采纳,获得10
4秒前
MMMMM发布了新的文献求助10
5秒前
孙皓然完成签到 ,获得积分10
6秒前
深情安青应助任嘉嘉采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
mmm完成签到,获得积分20
7秒前
卢映之完成签到,获得积分10
7秒前
8秒前
zzzzzz应助lll采纳,获得30
8秒前
含蓄的含羞草完成签到,获得积分10
8秒前
粗犷的灵松应助化学胖子采纳,获得50
9秒前
noobmaster发布了新的文献求助10
10秒前
11秒前
mmm发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
芊瑶完成签到,获得积分10
12秒前
zcq完成签到,获得积分10
12秒前
嘉嘉941216发布了新的文献求助10
14秒前
天天开心关注了科研通微信公众号
14秒前
14秒前
15秒前
日喝抽打发布了新的文献求助10
15秒前
一粟发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309340
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510349
捐赠科研通 2617829
什么是DOI,文献DOI怎么找? 1430504
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649319