3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss

去细胞化 脚手架 生物医学工程 再生(生物学) 组织工程 生物相容性材料 再生医学 细胞外基质 材料科学 化学 细胞 细胞生物学 医学 生物 生物化学
作者
Wisarut Kiratitanaporn,David B. Berry,Anusorn Mudla,Trevor Fried,Alison Lao,Claire Yu,Nan Hao,Samuel R. Ward,Shaochen Chen
出处
期刊:Biomaterials advances [Elsevier BV]
卷期号:142: 213171-213171 被引量:14
标识
DOI:10.1016/j.bioadv.2022.213171
摘要

Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering. This study utilized a photopolymerizable biocompatible elastomer - poly (glycerol sebacate) acrylate (PGSA) - to develop an in vitro model of muscle regeneration and proliferation into an acellular scaffold after VML injury. Mechanical properties of the scaffold were tuned by controlling light intensity during the 3D printing process to match the specific tension of skeletal muscle. The effect of both geometric (channel sizes between 300 and 600 μm) and biologic (decellularized muscle extracellular matrix (dECM)) cues on muscle progenitor cell infiltration, proliferation, organization, and maturation was evaluated in vitro using a near-infrared fluorescent protein (iRFP) transfected cell line to assess cells in the 3D scaffold. Larger channel sizes and dECM coating were found to enhance cell proliferation and maturation, while no discernable effect on cell alignment was observed. In addition, a pilot experiment was carried out to evaluate the regenerative capacity of this scaffold in vivo after a VML injury. Overall, this platform demonstrates a simple model to study muscle progenitor recruitment and differentiation into acellular scaffolds after VML repair.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助舒心的雍采纳,获得10
刚刚
晴天完成签到 ,获得积分10
1秒前
chenzhuod完成签到,获得积分10
1秒前
2秒前
AmyHu完成签到,获得积分10
2秒前
woaikeyan完成签到 ,获得积分10
2秒前
NexusExplorer应助梁寒采纳,获得10
4秒前
4秒前
5秒前
yingzaifeixiang完成签到 ,获得积分10
6秒前
田様应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
妍宝贝完成签到 ,获得积分10
6秒前
baomingqiu完成签到 ,获得积分10
10秒前
Freddy完成签到 ,获得积分10
10秒前
jnoker完成签到,获得积分10
10秒前
10秒前
12秒前
14秒前
舒心的雍发布了新的文献求助10
14秒前
梁寒完成签到,获得积分10
15秒前
HITvagary完成签到,获得积分0
16秒前
梁寒发布了新的文献求助10
19秒前
默默发布了新的文献求助10
22秒前
dwbh完成签到,获得积分10
25秒前
csu_zs完成签到,获得积分10
32秒前
意寒完成签到,获得积分10
34秒前
突突突完成签到 ,获得积分10
34秒前
我不是哪吒完成签到 ,获得积分10
35秒前
wangfang0228完成签到 ,获得积分10
40秒前
应俊完成签到 ,获得积分0
42秒前
折柳完成签到 ,获得积分10
42秒前
星辰大海应助123采纳,获得30
42秒前
明理的亦寒完成签到 ,获得积分10
43秒前
bkagyin应助默默采纳,获得10
43秒前
Позовименя完成签到,获得积分10
44秒前
harden9159完成签到,获得积分10
45秒前
刻苦羽毛完成签到,获得积分10
46秒前
51秒前
派大星和海绵宝宝完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866758
求助须知:如何正确求助?哪些是违规求助? 6426838
关于积分的说明 15654966
捐赠科研通 4981749
什么是DOI,文献DOI怎么找? 2686737
邀请新用户注册赠送积分活动 1629553
关于科研通互助平台的介绍 1587550