Clinical and Radiomics-Based Deep Learning Predictive Model for Early Treatment Failure after Neoadjuvant Radiochemotherapy for Rectal Cancer

医学 结直肠癌 新辅助治疗 逻辑回归 分级(工程) 放射治疗 放化疗 无线电技术 放射科 肿瘤科 内科学 癌症 乳腺癌 土木工程 工程类
作者
Konrad Stawiski,M. Maslowski,W. Maslowska,M. Kordzinska,B. Lochowska,J. Fijuth,W. Fendler
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:114 (3): e150-e150
标识
DOI:10.1016/j.ijrobp.2022.07.1004
摘要

Purpose/Objective(s)

As shown in RAPIDO and PRODIGE-23 trials, total neoadjuvant therapy for rectal cancer increases the complete response rate, however, the overall survival benefit remains uncertain. Although postponing surgery assures more time for tumor downstaging, it also increases surgical complications and can worsen prognosis in non-responding tumors. We aimed to develop a clinical and radiomics-based model for early treatment failure (ETF) prediction after neoadjuvant radiochemotherapy (RCHTx) for rectal cancer.

Materials/Methods

We conducted a prospective cohort analysis of 92 consecutive and eligible patients with rectal adenocarcinoma treated with neoadjuvant radiochemotherapy in the years 2018-2020, and followed until February 2022. We defined ETF as postoperative poor pathological response and no MRI-confirmed downstaging; or unresectability after neoadjuvant treatment; or cancer-related or treatment-related death within 18 months since treatment initiation. Collected clinical data included physical examination, grading, staging (before and after RCHTx), biomarker levels, RCHTx prescription details, and pre-operative MRI tumor and nodal characteristics. Radiomic features were extracted from GTV delineated on axial MRI T2 TSE sequences. To develop a predictive model, we followed OmicSelector-based (https://biostat.umed.pl/OmicSelector) feature selection, logistic regression (LR), and artificial deep neural network model development procedure. After splitting into training (60%), testing (20%), and validation (20%) datasets, the final feature set was selected based on the highest average logistic regression accuracy on all sets, while all patients with MRI performed outside our institution were included in the testing set (compensating possible batch effect).

Results

ETF was experienced by 24% of patients and was associated with significantly shorter overall survival (median 12.1 months [95%CI:8.5-16.5] vs. not reached, p<0.0001). None of the clinical factors was significantly associated with ETF (adjusted p value>0.05; AUC ROC range 0.39-0.64). LR model based on clinical factors presented overfitting (accuracy 82% on the training set, 56.2% on testing and 68.8% on validation set). The best feature set included 14 selected radiomic features, patient's weight, T-stage, grading, mesorectal fascia and nodal involvement. LR model based on those features achieved perfect accuracy on training and testing sets and 81.3% accuracy on the validation set. Deep neural network model utilizing selected clinical and radiomic features achieved 87.5% accuracy (80% sensitivity, 91% specificity) on testing and 93.8% accuracy (100% sensitivity, 91% specificity) on validation set.

Conclusion

Combined clinical and radiomics-based deep learning model could predict ETF after RCHTx for rectal cancer with at least 80% sensitivity and 90% specificity. Prediction of ETF after RCHTx could select high-risk patients who may require non-standard treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diu给天道酬勤的求助进行了留言
3秒前
4秒前
DL发布了新的文献求助10
5秒前
yyx发布了新的文献求助10
5秒前
ss完成签到 ,获得积分10
5秒前
HEIKU应助mc采纳,获得10
7秒前
8秒前
FashionBoy应助yg19960114采纳,获得10
10秒前
伊尔暗色发布了新的文献求助10
11秒前
细腻的灵槐完成签到 ,获得积分10
12秒前
13秒前
老仙翁发布了新的文献求助50
13秒前
13秒前
所所应助vivien采纳,获得10
14秒前
仁爱曼梅完成签到,获得积分20
16秒前
17秒前
17秒前
小心力学发布了新的文献求助10
18秒前
18秒前
DL完成签到,获得积分10
18秒前
19秒前
19秒前
乐乐乐乐乐乐完成签到,获得积分10
21秒前
Amber发布了新的文献求助10
22秒前
Rchy发布了新的文献求助10
22秒前
yg19960114发布了新的文献求助10
23秒前
23秒前
25秒前
大模型应助卡拉蹦蹦采纳,获得10
26秒前
小心力学完成签到,获得积分10
27秒前
eurhfe完成签到,获得积分10
28秒前
codwest完成签到,获得积分10
28秒前
31秒前
33秒前
Amber完成签到,获得积分10
33秒前
FashionBoy应助轻松的雨旋采纳,获得10
34秒前
ZXT发布了新的文献求助10
35秒前
36秒前
科研通AI2S应助朱朱采纳,获得10
36秒前
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262556
求助须知:如何正确求助?哪些是违规求助? 2903194
关于积分的说明 8324436
捐赠科研通 2573293
什么是DOI,文献DOI怎么找? 1398130
科研通“疑难数据库(出版商)”最低求助积分说明 654019
邀请新用户注册赠送积分活动 632623