Clinical and Radiomics-Based Deep Learning Predictive Model for Early Treatment Failure after Neoadjuvant Radiochemotherapy for Rectal Cancer

医学 结直肠癌 新辅助治疗 逻辑回归 分级(工程) 放射治疗 放化疗 无线电技术 放射科 肿瘤科 内科学 癌症 乳腺癌 土木工程 工程类
作者
Konrad Stawiski,M. Maslowski,W. Maslowska,M. Kordzinska,B. Lochowska,J. Fijuth,W. Fendler
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:114 (3): e150-e150
标识
DOI:10.1016/j.ijrobp.2022.07.1004
摘要

Purpose/Objective(s)

As shown in RAPIDO and PRODIGE-23 trials, total neoadjuvant therapy for rectal cancer increases the complete response rate, however, the overall survival benefit remains uncertain. Although postponing surgery assures more time for tumor downstaging, it also increases surgical complications and can worsen prognosis in non-responding tumors. We aimed to develop a clinical and radiomics-based model for early treatment failure (ETF) prediction after neoadjuvant radiochemotherapy (RCHTx) for rectal cancer.

Materials/Methods

We conducted a prospective cohort analysis of 92 consecutive and eligible patients with rectal adenocarcinoma treated with neoadjuvant radiochemotherapy in the years 2018-2020, and followed until February 2022. We defined ETF as postoperative poor pathological response and no MRI-confirmed downstaging; or unresectability after neoadjuvant treatment; or cancer-related or treatment-related death within 18 months since treatment initiation. Collected clinical data included physical examination, grading, staging (before and after RCHTx), biomarker levels, RCHTx prescription details, and pre-operative MRI tumor and nodal characteristics. Radiomic features were extracted from GTV delineated on axial MRI T2 TSE sequences. To develop a predictive model, we followed OmicSelector-based (https://biostat.umed.pl/OmicSelector) feature selection, logistic regression (LR), and artificial deep neural network model development procedure. After splitting into training (60%), testing (20%), and validation (20%) datasets, the final feature set was selected based on the highest average logistic regression accuracy on all sets, while all patients with MRI performed outside our institution were included in the testing set (compensating possible batch effect).

Results

ETF was experienced by 24% of patients and was associated with significantly shorter overall survival (median 12.1 months [95%CI:8.5-16.5] vs. not reached, p<0.0001). None of the clinical factors was significantly associated with ETF (adjusted p value>0.05; AUC ROC range 0.39-0.64). LR model based on clinical factors presented overfitting (accuracy 82% on the training set, 56.2% on testing and 68.8% on validation set). The best feature set included 14 selected radiomic features, patient's weight, T-stage, grading, mesorectal fascia and nodal involvement. LR model based on those features achieved perfect accuracy on training and testing sets and 81.3% accuracy on the validation set. Deep neural network model utilizing selected clinical and radiomic features achieved 87.5% accuracy (80% sensitivity, 91% specificity) on testing and 93.8% accuracy (100% sensitivity, 91% specificity) on validation set.

Conclusion

Combined clinical and radiomics-based deep learning model could predict ETF after RCHTx for rectal cancer with at least 80% sensitivity and 90% specificity. Prediction of ETF after RCHTx could select high-risk patients who may require non-standard treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逗逗完成签到,获得积分10
1秒前
1秒前
十里桃花不徘徊完成签到,获得积分10
1秒前
2秒前
有一颗卤蛋完成签到,获得积分10
2秒前
虚幻雪枫完成签到,获得积分10
3秒前
快乐的故事完成签到,获得积分10
5秒前
飞飞完成签到,获得积分10
5秒前
陈功完成签到,获得积分10
6秒前
万能图书馆应助fang20130608采纳,获得10
6秒前
Ding应助向雨兰采纳,获得10
7秒前
CHENDQ完成签到,获得积分10
7秒前
zw完成签到,获得积分10
8秒前
桐桐应助zxh采纳,获得10
8秒前
英姑应助开放的可冥采纳,获得10
9秒前
9秒前
跳跃的洋葱完成签到 ,获得积分10
9秒前
小云杉应助坚定的雁菱采纳,获得10
9秒前
ExtroGod完成签到,获得积分10
9秒前
天气好的话完成签到,获得积分10
10秒前
10秒前
七濑完成签到,获得积分10
10秒前
10秒前
hjabao完成签到,获得积分10
10秒前
10秒前
popo完成签到,获得积分10
11秒前
Mireia完成签到,获得积分10
12秒前
YYL完成签到,获得积分10
12秒前
洛玄川完成签到,获得积分10
13秒前
无奈世立完成签到,获得积分10
14秒前
顺顺尼完成签到 ,获得积分10
14秒前
浮华完成签到,获得积分10
14秒前
chaser完成签到,获得积分10
14秒前
meme发布了新的文献求助10
14秒前
15秒前
zrx15986完成签到,获得积分10
15秒前
丘比特应助kevin采纳,获得10
15秒前
岑晓冰完成签到 ,获得积分10
15秒前
grace完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259