PEO-based Interlayers for LAGP-type Solid-State Lithium-Metal Batteries

材料科学 锂(药物) 电解质 阳极 快离子导体 氧化物 无机化学 金属 酰亚胺 化学工程 化学 电极 高分子化学 冶金 物理化学 医学 工程类 内分泌学
作者
Dominik Steinle,Fanglin Wu,Guk‐Tae Kim,Stefano Passerini,Dominic Bresser
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (4): 375-375
标识
DOI:10.1149/ma2022-024375mtgabs
摘要

Solid-state electrolytes (SSEs) are expected to play a decisive role for the realization of safer rechargeable batteries and may, additionally, allow for the employment of lithium-metal anodes, thus, paving the way for significantly higher energy densities. 1, 2 There are essentially two main groups of SSEs: (i) polymer and (ii) inorganic solids. The latter can be divided, e.g., into sulfide and oxide based electrolytes. 3 Among the oxides, the so-called NASICON-type electrolytes such as LAGP (lithium aluminum germanium phosphate) are considered as attractive low-cost alternative compared to sulfides. 4 Nonetheless, the incompatibility of LAGP with lithium metal accompanied by the formation of highly resistive interfacial reaction products, detrimentally affecting cycle life and rate capability, remain a great challenge. 5 To overcome this issue, the introduction of polyether (e.g., polyethylene oxide, PEO) as protective interlayer between the lithium-metal anode and the LAGP SSE was proposed. 6, 7, 8 The successful use of such interlayers, however, requires a fast and efficient charge transfer across this interlayer. Herein, we present a comprehensive investigation of PEO-based interlayers comprising varying amounts of ionic liquid-based electrolytes, which consist of N -butyl- N -methyl pyrrolidinium-based and lithium cations as well as bis(fluorosulfonyl)imide (FSI - ) and bis(trifluoromethanesulfonyl)imide (TFSI - ) anions. Optimized compositions and the incorporation of selected additives further enhances the charge transfer across this interlayer and the two interfaces with the LAGP electrolyte and lithium metal, enabling long-term stable cycle life and good rate capability of the resulting lithium-metal battery cells. References 1. Gao, Z. et al. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 30 , 1705702 (2018). 2. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18 , 1278–1291 (2019). 3. Fan, L., Wei, S., Li, S., Li, Q. & Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 8 , 1702657 (2018). 4. Bachman, J. C. et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 116 , 140–62 (2016). 5. Hartmann, P. et al. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. C 117 , 21064–21074 (2013). 6. Wang, C. et al. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 9 , 13694–13702 (2017). 7. Bosubabu, D., Sivaraj, J., Sampathkumar, R. & Ramesha, K. LAGP|Li Interface Modification through a Wetted Polypropylene Interlayer for Solid State Li-Ion and Li–S batteries. ACS Appl. Energy Mater. 2 , 4118–4125 (2019). 8. Wang, L., Liu, D., Huang, T., Geng, Z. & Yu, A. Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection. RSC Adv. 10 , 10038–10045 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wjw发布了新的文献求助10
2秒前
科研通AI2S应助路卡利欧采纳,获得10
3秒前
3秒前
哲999发布了新的文献求助10
3秒前
陈民发布了新的文献求助10
3秒前
Zilch完成签到 ,获得积分10
4秒前
Neinei发布了新的文献求助30
4秒前
窗外的你发布了新的文献求助10
4秒前
4秒前
MU_CR7发布了新的文献求助10
5秒前
小曲完成签到 ,获得积分10
5秒前
6秒前
巫凝天发布了新的文献求助30
7秒前
医痞子发布了新的文献求助10
7秒前
xuqiansd完成签到,获得积分10
7秒前
8秒前
waikeyan发布了新的文献求助10
8秒前
小包子完成签到,获得积分10
9秒前
sx发布了新的文献求助10
9秒前
回答完成签到,获得积分10
10秒前
陈民完成签到,获得积分20
10秒前
MU_CR7完成签到,获得积分10
11秒前
Hello应助Neinei采纳,获得10
12秒前
zaafbb发布了新的文献求助10
13秒前
骄傲慕尼黑完成签到,获得积分10
13秒前
ZQP发布了新的文献求助10
13秒前
sssnesstudy完成签到,获得积分10
14秒前
aj关注了科研通微信公众号
14秒前
汉堡包应助Spark采纳,获得10
15秒前
佳小佳完成签到,获得积分10
15秒前
李健应助dayueban采纳,获得10
15秒前
煮饭吃Zz发布了新的文献求助10
16秒前
16秒前
朴实初夏完成签到 ,获得积分10
17秒前
zhouleiwang发布了新的文献求助10
18秒前
sx完成签到,获得积分10
18秒前
18秒前
无昵称完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905