PEO-based Interlayers for LAGP-type Solid-State Lithium-Metal Batteries

材料科学 锂(药物) 电解质 阳极 快离子导体 氧化物 无机化学 金属 酰亚胺 化学工程 化学 电极 高分子化学 冶金 物理化学 医学 工程类 内分泌学
作者
Dominik Steinle,Fanglin Wu,Guk‐Tae Kim,Stefano Passerini,Dominic Bresser
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (4): 375-375
标识
DOI:10.1149/ma2022-024375mtgabs
摘要

Solid-state electrolytes (SSEs) are expected to play a decisive role for the realization of safer rechargeable batteries and may, additionally, allow for the employment of lithium-metal anodes, thus, paving the way for significantly higher energy densities. 1, 2 There are essentially two main groups of SSEs: (i) polymer and (ii) inorganic solids. The latter can be divided, e.g., into sulfide and oxide based electrolytes. 3 Among the oxides, the so-called NASICON-type electrolytes such as LAGP (lithium aluminum germanium phosphate) are considered as attractive low-cost alternative compared to sulfides. 4 Nonetheless, the incompatibility of LAGP with lithium metal accompanied by the formation of highly resistive interfacial reaction products, detrimentally affecting cycle life and rate capability, remain a great challenge. 5 To overcome this issue, the introduction of polyether (e.g., polyethylene oxide, PEO) as protective interlayer between the lithium-metal anode and the LAGP SSE was proposed. 6, 7, 8 The successful use of such interlayers, however, requires a fast and efficient charge transfer across this interlayer. Herein, we present a comprehensive investigation of PEO-based interlayers comprising varying amounts of ionic liquid-based electrolytes, which consist of N -butyl- N -methyl pyrrolidinium-based and lithium cations as well as bis(fluorosulfonyl)imide (FSI - ) and bis(trifluoromethanesulfonyl)imide (TFSI - ) anions. Optimized compositions and the incorporation of selected additives further enhances the charge transfer across this interlayer and the two interfaces with the LAGP electrolyte and lithium metal, enabling long-term stable cycle life and good rate capability of the resulting lithium-metal battery cells. References 1. Gao, Z. et al. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 30 , 1705702 (2018). 2. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18 , 1278–1291 (2019). 3. Fan, L., Wei, S., Li, S., Li, Q. & Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 8 , 1702657 (2018). 4. Bachman, J. C. et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 116 , 140–62 (2016). 5. Hartmann, P. et al. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. C 117 , 21064–21074 (2013). 6. Wang, C. et al. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 9 , 13694–13702 (2017). 7. Bosubabu, D., Sivaraj, J., Sampathkumar, R. & Ramesha, K. LAGP|Li Interface Modification through a Wetted Polypropylene Interlayer for Solid State Li-Ion and Li–S batteries. ACS Appl. Energy Mater. 2 , 4118–4125 (2019). 8. Wang, L., Liu, D., Huang, T., Geng, Z. & Yu, A. Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection. RSC Adv. 10 , 10038–10045 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zll完成签到,获得积分10
刚刚
浮游应助cyf采纳,获得10
1秒前
222发布了新的文献求助10
1秒前
baiyufengsheng完成签到,获得积分20
1秒前
2秒前
路戳戳应助infinity采纳,获得10
2秒前
脑洞疼应助ieee拯救者采纳,获得10
2秒前
传奇3应助wx采纳,获得10
2秒前
科研通AI6应助鹤轸采纳,获得10
3秒前
3秒前
3秒前
大模型应助田田采纳,获得10
3秒前
神奇的海螺完成签到,获得积分10
4秒前
聪明伊发布了新的文献求助10
4秒前
JN完成签到,获得积分10
4秒前
梅里完成签到,获得积分10
4秒前
4秒前
情怀应助Wang0102采纳,获得10
5秒前
6秒前
谭冬冬完成签到,获得积分10
6秒前
6秒前
7秒前
艽野完成签到,获得积分10
7秒前
优秀爆米花完成签到,获得积分10
8秒前
8秒前
zz关闭了zz文献求助
9秒前
9秒前
spc68应助读书的时候采纳,获得10
10秒前
海鲭发布了新的文献求助30
12秒前
能干的向真完成签到,获得积分10
12秒前
木木发布了新的文献求助10
12秒前
务实冰烟发布了新的文献求助10
12秒前
13秒前
Inory007发布了新的文献求助10
13秒前
郭建福完成签到,获得积分10
13秒前
jimmyyyyyy发布了新的文献求助10
14秒前
YaoHui发布了新的文献求助10
14秒前
葡萄柚绿茶完成签到,获得积分10
14秒前
15秒前
gy发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450