PEO-based Interlayers for LAGP-type Solid-State Lithium-Metal Batteries

材料科学 锂(药物) 电解质 阳极 快离子导体 氧化物 无机化学 金属 酰亚胺 化学工程 化学 电极 高分子化学 冶金 物理化学 内分泌学 工程类 医学
作者
Dominik Steinle,Fanglin Wu,Guk‐Tae Kim,Stefano Passerini,Dominic Bresser
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (4): 375-375
标识
DOI:10.1149/ma2022-024375mtgabs
摘要

Solid-state electrolytes (SSEs) are expected to play a decisive role for the realization of safer rechargeable batteries and may, additionally, allow for the employment of lithium-metal anodes, thus, paving the way for significantly higher energy densities. 1, 2 There are essentially two main groups of SSEs: (i) polymer and (ii) inorganic solids. The latter can be divided, e.g., into sulfide and oxide based electrolytes. 3 Among the oxides, the so-called NASICON-type electrolytes such as LAGP (lithium aluminum germanium phosphate) are considered as attractive low-cost alternative compared to sulfides. 4 Nonetheless, the incompatibility of LAGP with lithium metal accompanied by the formation of highly resistive interfacial reaction products, detrimentally affecting cycle life and rate capability, remain a great challenge. 5 To overcome this issue, the introduction of polyether (e.g., polyethylene oxide, PEO) as protective interlayer between the lithium-metal anode and the LAGP SSE was proposed. 6, 7, 8 The successful use of such interlayers, however, requires a fast and efficient charge transfer across this interlayer. Herein, we present a comprehensive investigation of PEO-based interlayers comprising varying amounts of ionic liquid-based electrolytes, which consist of N -butyl- N -methyl pyrrolidinium-based and lithium cations as well as bis(fluorosulfonyl)imide (FSI - ) and bis(trifluoromethanesulfonyl)imide (TFSI - ) anions. Optimized compositions and the incorporation of selected additives further enhances the charge transfer across this interlayer and the two interfaces with the LAGP electrolyte and lithium metal, enabling long-term stable cycle life and good rate capability of the resulting lithium-metal battery cells. References 1. Gao, Z. et al. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 30 , 1705702 (2018). 2. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18 , 1278–1291 (2019). 3. Fan, L., Wei, S., Li, S., Li, Q. & Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 8 , 1702657 (2018). 4. Bachman, J. C. et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 116 , 140–62 (2016). 5. Hartmann, P. et al. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. C 117 , 21064–21074 (2013). 6. Wang, C. et al. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 9 , 13694–13702 (2017). 7. Bosubabu, D., Sivaraj, J., Sampathkumar, R. & Ramesha, K. LAGP|Li Interface Modification through a Wetted Polypropylene Interlayer for Solid State Li-Ion and Li–S batteries. ACS Appl. Energy Mater. 2 , 4118–4125 (2019). 8. Wang, L., Liu, D., Huang, T., Geng, Z. & Yu, A. Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection. RSC Adv. 10 , 10038–10045 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助and999采纳,获得10
1秒前
英俊的铭应助夜莺采纳,获得10
2秒前
在水一方应助夜莺采纳,获得10
2秒前
Lucas应助夜莺采纳,获得10
2秒前
Jasper应助夜莺采纳,获得10
2秒前
完美世界应助onepine采纳,获得10
2秒前
落后青筠完成签到 ,获得积分10
2秒前
4秒前
JamesPei应助jeonghan采纳,获得10
5秒前
Adler发布了新的文献求助60
5秒前
wy_wy完成签到,获得积分10
5秒前
情怀应助猪猪hero采纳,获得10
6秒前
浮华完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
丘比特应助Jeje采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
超人研究生完成签到,获得积分10
8秒前
C胖胖完成签到,获得积分10
8秒前
Owen应助chromium22采纳,获得10
8秒前
颜靖仇完成签到,获得积分10
9秒前
大方若山完成签到,获得积分10
9秒前
nanami完成签到,获得积分10
10秒前
白开水完成签到,获得积分10
11秒前
流云完成签到,获得积分10
12秒前
匹诺曹完成签到,获得积分10
12秒前
HaojunWang完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
LilyHan完成签到,获得积分20
15秒前
梁业完成签到,获得积分10
16秒前
苗条映寒关注了科研通微信公众号
16秒前
深情安青应助and999采纳,获得10
16秒前
兮豫完成签到 ,获得积分10
16秒前
16秒前
16秒前
Gtx完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069