Prognostic necroptosis-related gene signature aids immunotherapy in lung adenocarcinoma

坏死性下垂 免疫疗法 基因签名 医学 列线图 肿瘤科 癌症研究 肺癌 比例危险模型 腺癌 生存分析 癌症 基因 内科学 生物 基因表达 程序性细胞死亡 细胞凋亡 生物化学
作者
Yuqi Song,Jinming Zhang,Linan Fang,Wei Liu
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:13 被引量:4
标识
DOI:10.3389/fgene.2022.1027741
摘要

Background: Necroptosis is a phenomenon of cellular necrosis resulting from cell membrane rupture by the corresponding activation of Receptor Interacting Protein Kinase 3 (RIPK3) and Mixed Lineage Kinase domain-Like protein (MLKL) under programmed regulation. It is reported that necroptosis is closely related to the development of tumors, but the prognostic role and biological function of necroptosis in lung adenocarcinoma (LUAD), the most important cause of cancer-related deaths, is still obscure. Methods: In this study, we constructed a prognostic Necroptosis-related gene signature based on the RNA transcription data of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as well as the corresponding clinical information. Kaplan-Meier analysis, receiver operating characteristic (ROC), and Cox regression were made to validate and evaluate the model. We analyzed the immune landscape in LUAD and the relationship between the signature and immunotherapy regimens. Results: Five genes (RIPK3, MLKL, TLR2, TNFRSF1A, and ALDH2) were used to construct the prognostic signature, and patients were divided into high and low-risk groups in line with the risk score. Cox regression showed that risk score was an independent prognostic factor. Nomogram was created for predicting the survival rate of LUAD patients. Patients in high and low-risk groups have different tumor purity, tumor immunogenicity, and different sensitivity to common antitumor drugs. Conclusion: Our results highlight the association of necroptosis with LUAD and its potential use in guiding immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
九千岁完成签到,获得积分10
刚刚
大模型应助小银采纳,获得10
1秒前
1秒前
NexusExplorer应助曾曾采纳,获得10
1秒前
诚0911完成签到,获得积分20
1秒前
阳光的诗蕊关注了科研通微信公众号
2秒前
2秒前
欣喜小甜瓜完成签到,获得积分10
2秒前
平常的夏菡完成签到 ,获得积分10
2秒前
划水鱼发布了新的文献求助10
2秒前
3秒前
jisean完成签到,获得积分10
3秒前
liwei应助Makoto1377采纳,获得10
3秒前
浮游应助Makoto1377采纳,获得10
3秒前
赘婿应助自行采纳,获得10
4秒前
Fsy应助深秋大晌午采纳,获得10
4秒前
zhs发布了新的文献求助10
4秒前
5秒前
酒酒发布了新的文献求助10
5秒前
sam完成签到,获得积分10
6秒前
B站萧亚轩发布了新的文献求助10
6秒前
成就万仇完成签到,获得积分20
6秒前
xushaowen发布了新的文献求助10
7秒前
诗瑜发布了新的文献求助10
8秒前
Ray_Chun完成签到,获得积分10
9秒前
9秒前
浮游应助Luminous采纳,获得10
10秒前
10秒前
热情的寄瑶完成签到,获得积分10
11秒前
月亮发布了新的文献求助10
11秒前
yuki发布了新的文献求助10
11秒前
Makoto1377完成签到,获得积分20
12秒前
思源应助水合肼采纳,获得10
12秒前
13秒前
okkk发布了新的文献求助10
13秒前
852应助葛辉辉采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105