Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery

阳极 一氧化硅 一氧化碳 材料科学 锂(药物) 锂离子电池 电池(电) 离子 纳米技术 化学工程 化学 光电子学 冶金 电极 工程类 物理化学 有机化学 物理 功率(物理) 内分泌学 医学 量子力学
作者
Siying Zhu,Huiyang Li,Zhongli Hu,Qiaobao Zhang,Jinbao Zhao,Li Zhang
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:38 (6): 2103052- 被引量:66
标识
DOI:10.3866/pku.whxb202103052
摘要

Owing to the rapid development of scientific technology, the demand for energy storage equipment is increasing in modern society.Among the current energy storage devices, lithium-ion batteries (LIBs) have been widely used in portable electronics, handy electric tools, medical electronics, and other fields owing to their high energy density, high power density, long lifespan, low self-discharge rate, wide operating temperature range, and environmental friendliness.However, in recent years, with rapid development in various technological fields, such as mobile electronics and electric vehicles, the demand for batteries with much higher energy densities than the current ones has been increasing.Hence, the development of LIBs with a high energy density, prolonged cycle life, and high safety has become a focal interest in this field.To achieve the above objectives, it is important to strategically use novel anode materials with relatively high specific capacities.At present, artificial graphite is commonly used as an anode material for commercialized traditional LIBs, which can only deliver a practical capacity of 360-365 mAh•g -1 .Therefore, LIBs using graphite anodes have limited room for improvement in energy density.In the past two decades, considerable efforts have been devoted to silicon-based anode materials, which belong to the same family as carbon.To date, common silicon anode materials primarily include nano-silicon (nano-Si), silicon monoxide (SiO), suboxidized SiO (SiOx), and amorphous silicon metal alloy (amorphous SiM).Among them, SiO has attracted the most attention for use as a negative electrode material for LIBs.As an anode for lithium-ion batteries (LIBs), silicon monoxide (SiO) has a high specific capacity (~2043 mAh•g -1 ) and suitable charge (delithiation) potential (< 0.5 V).In addition, with the abundance of its raw material resource, low manufacturing cost, and environmental friendliness, SiO is considered a promising candidate for next-generation high-energy-density LIBs.Based on the testing of existing commercialized SiO materials, the reversible specific capacity of pure SiO can reach 1300-1700 mAh•g -1 .However, when acting as the anode for LIBs, SiO undergoes a severe volume change (~200%) during the lithiation/delithiation process, which can result in severe pulverization and detachment of the anode material.Meanwhile, lithium silicate and lithium oxide are irreversibly formed during the initial discharge-charge cycle.Moreover, the electrical conductivity of SiO is relatively low (6.7 × 10 -4 S•cm -1 ).These shortcomings seriously impact the interfacial stability and electrochemical performance of SiO-based LIBs, leading to a low initial Coulombic efficiency and poor long-term cycling stability, which has significantly restricted its commercial application.In recent years, substantial efforts have been made on structural optimization and interfacial modification of SiO anodes.However, there is still a lack of a more comprehensive summary of these important developments.Therefore, this review aims to introduce the research work in this area for readers interested in this emerging field and to summarize in detail the research work on the performance optimization of SiO in recent years.Based on the structural characteristics of the SiO anode material, this review expounds the main challenges facing the material, and then summarizes the structural and interfacial modification strategies from the perspectives of SiO structure optimization, SiO/carbon composites, and SiO/metal composites.The methods and their features in all the studies are concisely introduced, the electrochemical performances are demonstrated, and their correlations are compared and discussed.Finally, we propose the development of the structural and interfacial optimization of the SiO anode in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yznfly应助青年才俊采纳,获得30
2秒前
Li_KK发布了新的文献求助30
2秒前
科研小螃蟹完成签到,获得积分10
2秒前
张文博发布了新的文献求助10
3秒前
5秒前
所所应助eee采纳,获得10
7秒前
852应助rxyxiaoyu采纳,获得10
9秒前
小小米发布了新的文献求助10
10秒前
小白菜发布了新的文献求助10
10秒前
我是老大应助兰静采纳,获得10
11秒前
笑点低凌珍完成签到,获得积分10
12秒前
范慧晨发布了新的文献求助10
12秒前
张文博完成签到,获得积分20
12秒前
陈晚拧完成签到 ,获得积分10
13秒前
海鸥完成签到,获得积分10
14秒前
麦迪应助和谐的寒蕾采纳,获得10
15秒前
Minixiao完成签到,获得积分20
16秒前
失眠店员发布了新的文献求助10
16秒前
霓娜酱发布了新的文献求助10
16秒前
万能图书馆应助张文博采纳,获得30
16秒前
16秒前
嗯哼应助weijiechi采纳,获得10
17秒前
annaqz完成签到 ,获得积分10
17秒前
19秒前
19秒前
19秒前
Juno发布了新的文献求助10
19秒前
zwj驳回了CodeCraft应助
20秒前
共享精神应助老西瓜采纳,获得10
20秒前
20秒前
bkagyin应助孔乙己采纳,获得10
20秒前
思源应助小乔采纳,获得10
21秒前
kk应助向日葵采纳,获得10
21秒前
兰静发布了新的文献求助10
23秒前
Martin完成签到,获得积分10
24秒前
Li_KK完成签到,获得积分10
24秒前
25秒前
26秒前
大模型应助笑点低凌珍采纳,获得10
26秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 800
消化器内視鏡関連の偶発症に関する第7回全国調査報告2019〜2021年までの3年間 500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2863406
求助须知:如何正确求助?哪些是违规求助? 2469230
关于积分的说明 6696109
捐赠科研通 2159781
什么是DOI,文献DOI怎么找? 1147344
版权声明 585228
科研通“疑难数据库(出版商)”最低求助积分说明 563726