Deep Reinforcement Learning for Sequential Targeting

强化学习 收入 计算机科学 人工智能 可解释性 可扩展性 启发式 人口 时间范围 机器学习 经济 数学优化 数学 人口学 社会学 会计 数据库
作者
Wen Wang,Beibei Li,Xueming Luo,Xiaoyi Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (9): 5439-5460 被引量:11
标识
DOI:10.1287/mnsc.2022.4621
摘要

Deep reinforcement learning (DRL) has opened up many unprecedented opportunities in revolutionizing the digital marketing field. In this study, we designed a DRL-based personalized targeting strategy in a sequential setting. We show that the strategy is able to address three important challenges of sequential targeting: (1) forward looking (balancing between a firm’s current revenue and future revenues), (2) earning while learning (maximizing profits while continuously learning through exploration-exploitation), and (3) scalability (coping with a high-dimensional state and policy space). We illustrate this through a novel design of a DRL-based artificial intelligence (AI) agent. To better adapt DRL to complex consumer behavior dimensions, we proposed a quantization-based uncertainty learning heuristic for efficient exploration-exploitation. Our policy evaluation results through simulation suggest that the proposed DRL agent generates 26.75% more long-term revenues than can the non-DRL approaches on average and learns 76.92% faster than the second fastest model among all benchmarks. Further, in order to better understand the potential underlying mechanisms, we conducted multiple interpretability analyses to explain the patterns of learned optimal policy at both the individual and population levels. Our findings provide important managerial-relevant and theory-consistent insights. For instance, consecutive price promotions at the beginning can capture price-sensitive consumers’ immediate attention, whereas carefully spaced nonpromotional “cooldown” periods between price promotions can allow consumers to adjust their reference points. Additionally, consideration of future revenues is necessary from a long-term horizon, but weighing the future too much can also dampen revenues. In addition, analyses of heterogeneous treatment effects suggest that the optimal promotion sequence pattern highly varies across the consumer engagement stages. Overall, our study results demonstrate DRL’s potential to optimize these strategies’ combination to maximize long-term revenues. This paper was accepted by Kartik Hosanagar, information systems. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4621 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝桉完成签到,获得积分20
1秒前
1秒前
1秒前
hang完成签到,获得积分10
2秒前
张庭玉完成签到 ,获得积分10
2秒前
李哥完成签到,获得积分10
2秒前
Jenny完成签到 ,获得积分10
2秒前
wrscience完成签到,获得积分10
3秒前
4秒前
Hey完成签到 ,获得积分10
4秒前
6秒前
李青荣发布了新的文献求助10
6秒前
栗子完成签到 ,获得积分10
7秒前
Singularity应助njusdf采纳,获得10
7秒前
9秒前
10秒前
爆米花应助光亮的思柔采纳,获得10
12秒前
英俊的铭应助wrscience采纳,获得10
13秒前
czj完成签到,获得积分10
15秒前
泽Y完成签到 ,获得积分10
15秒前
小二郎应助ZH采纳,获得10
16秒前
而发的发布了新的文献求助10
16秒前
丁一完成签到,获得积分10
17秒前
17秒前
李青荣完成签到,获得积分10
17秒前
不配.应助光催化采纳,获得20
17秒前
111完成签到,获得积分20
18秒前
jg完成签到,获得积分10
18秒前
xiaohong完成签到 ,获得积分0
20秒前
苏菲完成签到 ,获得积分10
20秒前
skmksd完成签到,获得积分10
21秒前
爱学习的火龙果完成签到,获得积分10
22秒前
22秒前
SX完成签到,获得积分10
23秒前
jjj完成签到 ,获得积分10
23秒前
24秒前
爱学习的小凌完成签到,获得积分10
25秒前
汉堡包应助ZH采纳,获得10
25秒前
流苏完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011