Deep Reinforcement Learning for Sequential Targeting

强化学习 收入 计算机科学 人工智能 可解释性 可扩展性 启发式 人口 时间范围 机器学习 经济 数学优化 数学 人口学 社会学 会计 数据库
作者
Wen Wang,Beibei Li,Xueming Luo,Xiaoyi Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (9): 5439-5460 被引量:14
标识
DOI:10.1287/mnsc.2022.4621
摘要

Deep reinforcement learning (DRL) has opened up many unprecedented opportunities in revolutionizing the digital marketing field. In this study, we designed a DRL-based personalized targeting strategy in a sequential setting. We show that the strategy is able to address three important challenges of sequential targeting: (1) forward looking (balancing between a firm’s current revenue and future revenues), (2) earning while learning (maximizing profits while continuously learning through exploration-exploitation), and (3) scalability (coping with a high-dimensional state and policy space). We illustrate this through a novel design of a DRL-based artificial intelligence (AI) agent. To better adapt DRL to complex consumer behavior dimensions, we proposed a quantization-based uncertainty learning heuristic for efficient exploration-exploitation. Our policy evaluation results through simulation suggest that the proposed DRL agent generates 26.75% more long-term revenues than can the non-DRL approaches on average and learns 76.92% faster than the second fastest model among all benchmarks. Further, in order to better understand the potential underlying mechanisms, we conducted multiple interpretability analyses to explain the patterns of learned optimal policy at both the individual and population levels. Our findings provide important managerial-relevant and theory-consistent insights. For instance, consecutive price promotions at the beginning can capture price-sensitive consumers’ immediate attention, whereas carefully spaced nonpromotional “cooldown” periods between price promotions can allow consumers to adjust their reference points. Additionally, consideration of future revenues is necessary from a long-term horizon, but weighing the future too much can also dampen revenues. In addition, analyses of heterogeneous treatment effects suggest that the optimal promotion sequence pattern highly varies across the consumer engagement stages. Overall, our study results demonstrate DRL’s potential to optimize these strategies’ combination to maximize long-term revenues. This paper was accepted by Kartik Hosanagar, information systems. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2022.4621 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang樂梧完成签到,获得积分20
刚刚
刚刚
刚刚
wjx发布了新的文献求助10
刚刚
刚刚
youhao6a完成签到,获得积分10
刚刚
1秒前
HAO发布了新的文献求助10
1秒前
幸福的盼海完成签到,获得积分10
1秒前
1秒前
Hyy发布了新的文献求助10
2秒前
时米米米发布了新的文献求助10
2秒前
sidegate完成签到,获得积分10
2秒前
2秒前
隐形曼青应助积极的罡采纳,获得10
3秒前
温婉发布了新的文献求助10
4秒前
潜水的老鱼完成签到,获得积分10
4秒前
Zenobia发布了新的文献求助10
5秒前
tuanhust应助虚幻的一一采纳,获得20
5秒前
5秒前
吴晨曦发布了新的文献求助10
6秒前
cc发布了新的文献求助10
7秒前
快不了完成签到,获得积分10
7秒前
大巧若拙发布了新的文献求助10
7秒前
cooot发布了新的文献求助10
7秒前
光影相生应助LYY采纳,获得10
9秒前
充电宝应助lllkkk采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
积极问晴完成签到,获得积分10
10秒前
orixero应助洛丶采纳,获得10
11秒前
乐乐应助ttnnn采纳,获得10
11秒前
11秒前
安静凤妖完成签到,获得积分10
12秒前
ZY完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788