已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Porosity Detection in Powder Bed Fusion Additive Manufacturing with Convolutional Neural Networks

多孔性 卷积神经网络 融合 计算机科学 人工神经网络 材料科学 人工智能 复合材料 语言学 哲学
标识
DOI:10.18178/wcse.2022.04.117
摘要

The sector of Additive Manufacturing is growing continuously in recent years, creating a wide range of applications such as medical devices and spacecraft parts.As the industry has high demands on the quality of these printed parts, a proper process monitoring is needed to ensure reliable parts while reducing costs.This approach focuses on the Powder Bed Fusion technology and adds an additional laser microphone to monitor the print process in-situ.Multiple defects can occur while printing, one of these is porosity.Since porosity has a strong influence on part stability, there must be no deviations here.To detect the level of porosity early on, a 2D Convolutional Neural Network was trained on in-situ audio recordings.Within an easy to use tweakable pipeline mel spectrograms were generated and fed into the neural network for classification of the porosity level.A F1-Score of 98,5% proves the concept that porosity defects of printed parts can indeed be effectively detected within production by neural networks fed with audio spectrograms.Porosity can thus be directly derived during the printing process itself, saving costs and material as a porous print can be stopped early and a x-ray after the print is done is not necessary anymore.This approach proves that integrated sensors in the printing process can deliver a huge benefit to the additive manufacturing in production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孟筱关注了科研通微信公众号
3秒前
7秒前
8秒前
12秒前
12秒前
13秒前
52cc000发布了新的文献求助10
14秒前
73发布了新的文献求助10
15秒前
16秒前
Ail发布了新的文献求助20
16秒前
18秒前
21秒前
正直的夏真完成签到 ,获得积分10
21秒前
22秒前
73完成签到,获得积分10
22秒前
22秒前
孟筱发布了新的文献求助10
23秒前
23秒前
科目三应助彭闻佳采纳,获得10
24秒前
小屁孩发布了新的文献求助10
25秒前
25秒前
lala完成签到,获得积分10
28秒前
Le完成签到,获得积分10
28秒前
小王发布了新的文献求助10
29秒前
29秒前
兆辉发布了新的文献求助20
30秒前
墨倾池发布了新的文献求助10
30秒前
32秒前
32秒前
33秒前
xiaoding应助于广喜采纳,获得10
33秒前
34秒前
34秒前
sxtk发布了新的文献求助10
35秒前
小王完成签到,获得积分10
36秒前
37秒前
从容芮应助小屁孩采纳,获得10
38秒前
愉快若剑发布了新的文献求助10
39秒前
guard发布了新的文献求助10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150394
求助须知:如何正确求助?哪些是违规求助? 2801510
关于积分的说明 7845179
捐赠科研通 2459074
什么是DOI,文献DOI怎么找? 1308905
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727