重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Contrastive Learning for Prediction of Alzheimer's Disease Using Brain 18F-FDG PET

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征提取 深度学习 异常 特征(语言学) 稳健性(进化) 正电子发射断层摄影术 医学 核医学 基因 精神科 哲学 生物化学 语言学 化学
作者
Yonglin Chen,Huabin Wang,Gong Zhang,Xiao Liu,Wei Huang,Xianjun Han,Xuejun Li,Melanie Martin,Liang Tao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1735-1746 被引量:10
标识
DOI:10.1109/jbhi.2022.3231905
摘要

Brain 18F-FDG PET images are commonly-known materials for effectively predicting Alzheimer's disease (AD). How-ever, the data volume of PET is usually insufficient, which is unfavorable to train an accurate AD prediction networks. Fur-thermore, the PET image is noisy with low signal-to-noise ratio, and simultaneously the feature (metabolic abnormality) used for predicting AD in PET image is not always obvious. Such charac-teristics of 18F-FDG PET images hinder the existing deep learning networks to learn the feature of lesion (i.e., glucose metabolism abnormality) effectively, which leads to unsatisfactory classifica-tion performance and poor robustness. In this paper, a contrastive-based learning method is proposed to address the challenges of PET image inherently possessed. Firstly, the slices of 3D PET image are amplified by cropping the image of anchors (i.e., an augmented version of the same image) to generate extended train-ing data. Meanwhile, contrastive loss is adopted to enlarge inter-class feature distances and reduce intra-class feature differences using subject fuzzy labels as supervised information. Secondly, we construct a double convolutional hybrid attention module to enhance the network to learn different perceptual domains where two convolutional layers with different convolutional kernels (7 × 7 and 5 × 5) are constructed. Moreover, we recommend a diagnosis mechanism by analyzing the consistency of predicted result for PET slices alone with clinical neuropsychological assessment to achieve a better AD diagnosis. The experimental results show that the proposed method outperforms the state-of-the-arts for brain 18F-FDG PET images while remaining satisfactory computational performance, and hence demonstrate the advantage of the method in effectively predicting AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Ding_RJ采纳,获得10
1秒前
佳丽发布了新的文献求助10
1秒前
酷波er应助苏苏采纳,获得10
1秒前
1秒前
ding应助tqs采纳,获得30
1秒前
JeKing完成签到,获得积分10
2秒前
t通发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
666完成签到,获得积分10
2秒前
wwwww发布了新的文献求助10
3秒前
3秒前
加菲丰丰应助专注思雁采纳,获得10
5秒前
andy完成签到,获得积分10
5秒前
乐乐应助夏晴晴采纳,获得10
5秒前
寒夜发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
大个应助单薄的小松鼠采纳,获得10
10秒前
天天快乐应助伊呀呀呀采纳,获得10
10秒前
10秒前
科研通AI6应助要减肥高山采纳,获得10
11秒前
11秒前
wwwww完成签到,获得积分20
12秒前
12秒前
ZZz完成签到,获得积分20
13秒前
zcy发布了新的文献求助10
13秒前
13秒前
一一发布了新的文献求助20
14秒前
顺利盼望发布了新的文献求助10
14秒前
wise111发布了新的文献求助10
14秒前
小小发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739