Contrastive Learning for Prediction of Alzheimer's Disease Using Brain 18F-FDG PET

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征提取 深度学习 异常 特征(语言学) 稳健性(进化) 正电子发射断层摄影术 医学 核医学 基因 精神科 哲学 生物化学 语言学 化学
作者
Yonglin Chen,Huabin Wang,Gong Zhang,Xiao Liu,Wei Huang,Xianjun Han,Xuejun Li,Melanie Martin,Liang Tao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1735-1746 被引量:10
标识
DOI:10.1109/jbhi.2022.3231905
摘要

Brain 18F-FDG PET images are commonly-known materials for effectively predicting Alzheimer's disease (AD). How-ever, the data volume of PET is usually insufficient, which is unfavorable to train an accurate AD prediction networks. Fur-thermore, the PET image is noisy with low signal-to-noise ratio, and simultaneously the feature (metabolic abnormality) used for predicting AD in PET image is not always obvious. Such charac-teristics of 18F-FDG PET images hinder the existing deep learning networks to learn the feature of lesion (i.e., glucose metabolism abnormality) effectively, which leads to unsatisfactory classifica-tion performance and poor robustness. In this paper, a contrastive-based learning method is proposed to address the challenges of PET image inherently possessed. Firstly, the slices of 3D PET image are amplified by cropping the image of anchors (i.e., an augmented version of the same image) to generate extended train-ing data. Meanwhile, contrastive loss is adopted to enlarge inter-class feature distances and reduce intra-class feature differences using subject fuzzy labels as supervised information. Secondly, we construct a double convolutional hybrid attention module to enhance the network to learn different perceptual domains where two convolutional layers with different convolutional kernels (7 × 7 and 5 × 5) are constructed. Moreover, we recommend a diagnosis mechanism by analyzing the consistency of predicted result for PET slices alone with clinical neuropsychological assessment to achieve a better AD diagnosis. The experimental results show that the proposed method outperforms the state-of-the-arts for brain 18F-FDG PET images while remaining satisfactory computational performance, and hence demonstrate the advantage of the method in effectively predicting AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
m(_._)m完成签到 ,获得积分0
1秒前
Hello应助优美紫槐采纳,获得10
1秒前
LWWI发布了新的文献求助10
2秒前
乔乔乔完成签到,获得积分10
2秒前
Jyouang发布了新的文献求助10
3秒前
3秒前
Sunday完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
研究生完成签到,获得积分10
5秒前
jingwen完成签到,获得积分10
5秒前
www发布了新的文献求助10
5秒前
5秒前
FashionBoy应助赵琪采纳,获得10
5秒前
Tin完成签到 ,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
李梦頔关注了科研通微信公众号
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
天天快乐应助柠檬人采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
孙元应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
fy12345发布了新的文献求助10
9秒前
SciGPT应助LS采纳,获得10
9秒前
10秒前
jingwen发布了新的文献求助10
11秒前
11秒前
11秒前
LWWI完成签到,获得积分20
11秒前
王预止完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712345
求助须知:如何正确求助?哪些是违规求助? 5209385
关于积分的说明 15267184
捐赠科研通 4864321
什么是DOI,文献DOI怎么找? 2611345
邀请新用户注册赠送积分活动 1561615
关于科研通互助平台的介绍 1518892