Contrastive Learning for Prediction of Alzheimer's Disease Using Brain 18F-FDG PET

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征提取 深度学习 异常 特征(语言学) 稳健性(进化) 正电子发射断层摄影术 医学 核医学 基因 精神科 哲学 生物化学 语言学 化学
作者
Yonglin Chen,Huabin Wang,Gong Zhang,Xiao Liu,Wei Huang,Xianjun Han,Xuejun Li,Melanie Martin,Liang Tao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1735-1746 被引量:10
标识
DOI:10.1109/jbhi.2022.3231905
摘要

Brain 18F-FDG PET images are commonly-known materials for effectively predicting Alzheimer's disease (AD). How-ever, the data volume of PET is usually insufficient, which is unfavorable to train an accurate AD prediction networks. Fur-thermore, the PET image is noisy with low signal-to-noise ratio, and simultaneously the feature (metabolic abnormality) used for predicting AD in PET image is not always obvious. Such charac-teristics of 18F-FDG PET images hinder the existing deep learning networks to learn the feature of lesion (i.e., glucose metabolism abnormality) effectively, which leads to unsatisfactory classifica-tion performance and poor robustness. In this paper, a contrastive-based learning method is proposed to address the challenges of PET image inherently possessed. Firstly, the slices of 3D PET image are amplified by cropping the image of anchors (i.e., an augmented version of the same image) to generate extended train-ing data. Meanwhile, contrastive loss is adopted to enlarge inter-class feature distances and reduce intra-class feature differences using subject fuzzy labels as supervised information. Secondly, we construct a double convolutional hybrid attention module to enhance the network to learn different perceptual domains where two convolutional layers with different convolutional kernels (7 × 7 and 5 × 5) are constructed. Moreover, we recommend a diagnosis mechanism by analyzing the consistency of predicted result for PET slices alone with clinical neuropsychological assessment to achieve a better AD diagnosis. The experimental results show that the proposed method outperforms the state-of-the-arts for brain 18F-FDG PET images while remaining satisfactory computational performance, and hence demonstrate the advantage of the method in effectively predicting AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张无缺完成签到,获得积分10
2秒前
4秒前
CodeCraft应助MES采纳,获得10
5秒前
笨笨乘风完成签到,获得积分10
6秒前
田様应助axunQAQ采纳,获得10
8秒前
完美秋烟发布了新的文献求助10
8秒前
无花果应助糊涂的小伙采纳,获得10
8秒前
白betty完成签到,获得积分10
8秒前
MQ&FF完成签到,获得积分0
9秒前
啦啦啦完成签到,获得积分10
10秒前
11秒前
12秒前
英俊的铭应助小安采纳,获得10
13秒前
14秒前
sun完成签到,获得积分10
14秒前
耍酷的夏云应助勤劳落雁采纳,获得10
16秒前
16秒前
ywang发布了新的文献求助10
16秒前
车秋寒完成签到,获得积分10
16秒前
刘哈哈关注了科研通微信公众号
16秒前
葱饼完成签到 ,获得积分10
17秒前
Anquan完成签到,获得积分10
17秒前
yudandan@CJLU发布了新的文献求助10
18秒前
鱼儿123完成签到,获得积分10
18秒前
端庄的访枫完成签到 ,获得积分10
19秒前
车秋寒发布了新的文献求助10
19秒前
19秒前
完美秋烟完成签到,获得积分10
20秒前
21秒前
23秒前
lee1992完成签到,获得积分10
23秒前
nextconnie发布了新的文献求助10
24秒前
nextconnie发布了新的文献求助10
24秒前
nextconnie发布了新的文献求助10
24秒前
CO2发布了新的文献求助10
25秒前
uniquedl完成签到 ,获得积分10
25秒前
nextconnie发布了新的文献求助10
25秒前
子伊完成签到 ,获得积分10
26秒前
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849