Targeting protein–ligand neosurfaces with a generalizable deep learning tool

计算生物学 配体(生物化学) 计算机科学 深度学习 人工智能 数据科学 化学 生物 生物化学 受体
作者
Anthony Marchand,Stephen Buckley,Arne Schneuing,Martin Pačesa,Maddalena Elia,Pablo Gaínza,Evgenia Elizarova,Rebecca M. Neeser,Pao‐Wan Lee,Luc Reymond,Yangyang Miao,Leo Scheller,Sandrine Georgeon,Joseph Schmidt,Philippe Schwaller,Sebastian J. Maerkl,Michael M. Bronstein,Bruno E. Correia
出处
期刊:Nature [Springer Nature]
标识
DOI:10.1038/s41586-024-08435-4
摘要

Molecular recognition events between proteins drive biological processes in living systems1. However, higher levels of mechanistic regulation have emerged, in which protein–protein interactions are conditioned to small molecules2–5. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field6,7. Here we present a computational strategy for the design of proteins that target neosurfaces, that is, surfaces arising from protein–ligand complexes. To develop this strategy, we leveraged a geometric deep learning approach based on learned molecular surface representations8,9 and experimentally validated binders against three drug-bound protein complexes: Bcl2–venetoclax, DB3–progesterone and PDF1–actinonin. All binders demonstrated high affinities and accurate specificities, as assessed by mutational and structural characterization. Remarkably, surface fingerprints previously trained only on proteins could be applied to neosurfaces induced by interactions with small molecules, providing a powerful demonstration of generalizability that is uncommon in other deep learning approaches. We anticipate that such designed chemically induced protein interactions will have the potential to expand the sensing repertoire and the assembly of new synthetic pathways in engineered cells for innovative drug-controlled cell-based therapies10. A computational deep learning approach is used to design synthetic proteins that target the neosurfaces formed by protein–ligand interactions, with applications in the development of new therapeutic modalities such as molecular glues or cell-based therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangzhao发布了新的文献求助10
1秒前
1秒前
1秒前
CipherSage应助秘书采纳,获得10
2秒前
西木完成签到,获得积分10
3秒前
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
qzj完成签到,获得积分10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
so000应助科研通管家采纳,获得200
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
Rohee完成签到,获得积分20
6秒前
滚去看书发布了新的文献求助10
6秒前
李健的小迷弟应助橘络采纳,获得10
7秒前
10秒前
FIN应助jg采纳,获得10
10秒前
研友_Y59785应助zyl采纳,获得10
10秒前
11秒前
12秒前
英姑应助秀气de大饼采纳,获得10
13秒前
活泼菠萝发布了新的文献求助10
14秒前
丘比特应助zhangscience采纳,获得10
14秒前
wyi完成签到,获得积分10
14秒前
15秒前
安陌煜发布了新的文献求助30
16秒前
FIN应助Aikesi采纳,获得30
16秒前
FIN应助好吃的香菱采纳,获得20
16秒前
共享精神应助悦耳听芹采纳,获得10
17秒前
17秒前
sfas发布了新的文献求助10
17秒前
17秒前
shingai发布了新的文献求助10
18秒前
xiao发布了新的文献求助10
19秒前
19秒前
无辜的老黑完成签到,获得积分10
20秒前
monk完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589