The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators

列线图 预测值 计算机科学 双雷达 医学物理学 医学 放射科 肿瘤科 内科学 乳腺摄影术 癌症 乳腺癌
作者
Chunchun Jin,Meifang Deng,Yanling Bei,Chan Zhang,Shiya Wang,Shun Yang,Lei Qiu,Xiu‐Yan Liu,Qiuxiang Chen
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01497-w
摘要

Ovarian cancer remains a leading cause of death among women, largely due to its asymptomatic early stages and high mortality when diagnosed late. Early detection significantly improves survival rates, and the Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) is currently the most commonly used method, but has limitations in specificity and accuracy. While O-RADS US has standardized reporting, its sensitivity can lead to the misdiagnosis of benign masses as malignant, resulting in overtreatment. This study aimed to construct a nomogram model based on the O-RADS US and clinical and laboratory indicators to predict the malignancy risk of adnexal cystic-solid masses. This retrospective study collected data from patients with adnexal cystic-solid masses who underwent ultrasonography and were pathologically confirmed between January 2021 and December 2023 at the First Affiliated Hospital of Shenzhen University. They were categorized into benign and malignant groups according to pathological findings. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the most relevant predictors of ovarian cancer. A nomogram model was constructed, and its diagnostic performance was calculated. We bootstrapped the data 500 times to perform internal verification, drew a calibration curve to verify the prediction ability, and performed a decision curve analysis to assess clinical usefulness. A total of 399 patients with adnexal cystic-solid masses were included in this study: 327 in the benign group and 72 in the malignant group. Five predictors associated with the risk of malignancy of adnexal cystic-solid masses were selected using LASSO regression: O-RADS, acoustic shadowing, postmenopausal status, CA125, and HE4. The area under the curve, sensitivity, specificity, accuracy, positive and negative predictive values of the nomogram were 0.909, 83.3%, 82.9%, 83.0%, 51.7%, and 95.8%, respectively. The calibration curve of the nomogram showed good consistency between the predicted and actual probabilities, and the decision curve showed good clinical usefulness. The nomogram model based on O-RADS US and clinical and laboratory indicators can be used to predict the risk of malignancy in adnexal cystic-solid masses, with high predictive performance, good calibration, and clinical usefulness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小夏完成签到,获得积分10
1秒前
sfq完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
杨佳楠发布了新的文献求助10
2秒前
3秒前
所所应助一一一多采纳,获得10
4秒前
4秒前
JamesPei应助年年年年采纳,获得10
4秒前
逍遥游发布了新的文献求助10
4秒前
bio生物发布了新的文献求助10
5秒前
墨懿发布了新的文献求助10
5秒前
天才少年王旭东完成签到 ,获得积分20
5秒前
发发完成签到 ,获得积分10
6秒前
爆米花应助涵泽采纳,获得10
6秒前
深情安青应助jiqixi采纳,获得10
6秒前
浦老四发布了新的文献求助10
7秒前
7秒前
readhistory发布了新的文献求助10
7秒前
华仔应助三人行采纳,获得10
7秒前
Danboard完成签到,获得积分10
7秒前
Lizhuzhu完成签到,获得积分10
8秒前
火锅发布了新的文献求助10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
年年年年完成签到,获得积分10
9秒前
10秒前
在水一方应助蜜桃奇迹采纳,获得10
11秒前
12秒前
13秒前
neil完成签到,获得积分10
13秒前
离歌完成签到,获得积分10
13秒前
13秒前
14秒前
刘欣桐完成签到 ,获得积分10
15秒前
zz完成签到,获得积分20
15秒前
隐形曼青应助FUNG采纳,获得10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524549
求助须知:如何正确求助?哪些是违规求助? 4615137
关于积分的说明 14546433
捐赠科研通 4553077
什么是DOI,文献DOI怎么找? 2495132
邀请新用户注册赠送积分活动 1475734
关于科研通互助平台的介绍 1447514