The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators

列线图 预测值 计算机科学 双雷达 医学物理学 医学 放射科 肿瘤科 内科学 乳腺摄影术 癌症 乳腺癌
作者
Chunchun Jin,Meifang Deng,Yanling Bei,Chan Zhang,Shiya Wang,Shun Yang,Lei Qiu,Xiu‐Yan Liu,Qiuxiang Chen
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01497-w
摘要

Ovarian cancer remains a leading cause of death among women, largely due to its asymptomatic early stages and high mortality when diagnosed late. Early detection significantly improves survival rates, and the Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) is currently the most commonly used method, but has limitations in specificity and accuracy. While O-RADS US has standardized reporting, its sensitivity can lead to the misdiagnosis of benign masses as malignant, resulting in overtreatment. This study aimed to construct a nomogram model based on the O-RADS US and clinical and laboratory indicators to predict the malignancy risk of adnexal cystic-solid masses. This retrospective study collected data from patients with adnexal cystic-solid masses who underwent ultrasonography and were pathologically confirmed between January 2021 and December 2023 at the First Affiliated Hospital of Shenzhen University. They were categorized into benign and malignant groups according to pathological findings. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the most relevant predictors of ovarian cancer. A nomogram model was constructed, and its diagnostic performance was calculated. We bootstrapped the data 500 times to perform internal verification, drew a calibration curve to verify the prediction ability, and performed a decision curve analysis to assess clinical usefulness. A total of 399 patients with adnexal cystic-solid masses were included in this study: 327 in the benign group and 72 in the malignant group. Five predictors associated with the risk of malignancy of adnexal cystic-solid masses were selected using LASSO regression: O-RADS, acoustic shadowing, postmenopausal status, CA125, and HE4. The area under the curve, sensitivity, specificity, accuracy, positive and negative predictive values of the nomogram were 0.909, 83.3%, 82.9%, 83.0%, 51.7%, and 95.8%, respectively. The calibration curve of the nomogram showed good consistency between the predicted and actual probabilities, and the decision curve showed good clinical usefulness. The nomogram model based on O-RADS US and clinical and laboratory indicators can be used to predict the risk of malignancy in adnexal cystic-solid masses, with high predictive performance, good calibration, and clinical usefulness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
壹吾鱼完成签到,获得积分10
刚刚
1秒前
152van发布了新的文献求助10
1秒前
小衫生完成签到,获得积分20
1秒前
ZhangHaoYuan完成签到,获得积分10
2秒前
隐形曼青应助yu采纳,获得10
3秒前
3秒前
4秒前
5秒前
科研通AI6应助xmingpsy采纳,获得10
5秒前
5秒前
5秒前
华仔应助李楼村采纳,获得10
6秒前
科研通AI6应助xiaofeifantasy采纳,获得10
6秒前
7秒前
7秒前
tongguang发布了新的文献求助10
7秒前
咖啡豆发布了新的文献求助200
8秒前
我是老大应助faye采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
SciGPT应助152van采纳,获得10
9秒前
鲤鱼酸奶发布了新的文献求助20
10秒前
10秒前
科研通AI6应助杨紫宸采纳,获得10
10秒前
高兴断秋发布了新的文献求助10
11秒前
静待花开发布了新的文献求助10
11秒前
12秒前
一条纤维化的鱼完成签到,获得积分10
12秒前
文静的跳跳糖完成签到,获得积分10
12秒前
12秒前
12秒前
机智冬灵完成签到,获得积分10
13秒前
朱妙彤发布了新的文献求助10
13秒前
韩野发布了新的文献求助10
13秒前
14秒前
超级李包包完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906