已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators

列线图 预测值 计算机科学 双雷达 医学物理学 医学 放射科 肿瘤科 内科学 乳腺摄影术 癌症 乳腺癌
作者
Chunchun Jin,Meifang Deng,Yanling Bei,Chan Zhang,Shiya Wang,Shun Yang,Lei Qiu,Xiu‐Yan Liu,Qiuxiang Chen
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01497-w
摘要

Ovarian cancer remains a leading cause of death among women, largely due to its asymptomatic early stages and high mortality when diagnosed late. Early detection significantly improves survival rates, and the Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) is currently the most commonly used method, but has limitations in specificity and accuracy. While O-RADS US has standardized reporting, its sensitivity can lead to the misdiagnosis of benign masses as malignant, resulting in overtreatment. This study aimed to construct a nomogram model based on the O-RADS US and clinical and laboratory indicators to predict the malignancy risk of adnexal cystic-solid masses. This retrospective study collected data from patients with adnexal cystic-solid masses who underwent ultrasonography and were pathologically confirmed between January 2021 and December 2023 at the First Affiliated Hospital of Shenzhen University. They were categorized into benign and malignant groups according to pathological findings. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the most relevant predictors of ovarian cancer. A nomogram model was constructed, and its diagnostic performance was calculated. We bootstrapped the data 500 times to perform internal verification, drew a calibration curve to verify the prediction ability, and performed a decision curve analysis to assess clinical usefulness. A total of 399 patients with adnexal cystic-solid masses were included in this study: 327 in the benign group and 72 in the malignant group. Five predictors associated with the risk of malignancy of adnexal cystic-solid masses were selected using LASSO regression: O-RADS, acoustic shadowing, postmenopausal status, CA125, and HE4. The area under the curve, sensitivity, specificity, accuracy, positive and negative predictive values of the nomogram were 0.909, 83.3%, 82.9%, 83.0%, 51.7%, and 95.8%, respectively. The calibration curve of the nomogram showed good consistency between the predicted and actual probabilities, and the decision curve showed good clinical usefulness. The nomogram model based on O-RADS US and clinical and laboratory indicators can be used to predict the risk of malignancy in adnexal cystic-solid masses, with high predictive performance, good calibration, and clinical usefulness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
瑞瑞完成签到,获得积分10
2秒前
hy1234完成签到 ,获得积分10
3秒前
4秒前
科研靓仔发布了新的文献求助10
5秒前
6秒前
常老三完成签到,获得积分10
6秒前
123456发布了新的文献求助10
7秒前
赘婿应助瑞瑞采纳,获得10
8秒前
bwbw完成签到 ,获得积分10
9秒前
ET发布了新的文献求助10
11秒前
lamb发布了新的文献求助10
13秒前
所所应助123456采纳,获得10
13秒前
排骨炖豆角完成签到 ,获得积分10
14秒前
打打应助零零采纳,获得10
17秒前
yiryir完成签到 ,获得积分10
18秒前
EED完成签到 ,获得积分10
22秒前
昏睡的笑南完成签到,获得积分10
24秒前
redamancy完成签到 ,获得积分10
26秒前
27秒前
28秒前
30秒前
付广文完成签到,获得积分10
33秒前
lwm不想看文献完成签到 ,获得积分10
33秒前
零零发布了新的文献求助10
34秒前
Myla发布了新的文献求助10
34秒前
YukiXu完成签到 ,获得积分10
35秒前
边曦完成签到 ,获得积分10
35秒前
38秒前
cjx完成签到,获得积分10
38秒前
奋斗的绝悟完成签到,获得积分10
38秒前
fate0325发布了新的文献求助10
41秒前
orixero应助无奈秋荷采纳,获得10
41秒前
桃子e完成签到 ,获得积分10
42秒前
wentong完成签到,获得积分10
51秒前
可乐发布了新的文献求助10
53秒前
一支小玫瑰完成签到 ,获得积分10
54秒前
54秒前
何柯完成签到,获得积分20
55秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125899
求助须知:如何正确求助?哪些是违规求助? 2776224
关于积分的说明 7729457
捐赠科研通 2431591
什么是DOI,文献DOI怎么找? 1292142
科研通“疑难数据库(出版商)”最低求助积分说明 622497
版权声明 600392