Unconventional Interconnected High‐Entropy Alloy Nanodendrites for Remarkably Efficient C‐C Bond Cleavage toward Complete Ethanol Oxidation

催化作用 合金 键裂 劈理(地质) 化学工程 材料科学 化学 乙醇 组合化学 有机化学 复合材料 断裂(地质) 工程类
作者
Yan Wang,Huiying Meng,Renqin Yu,Jie Hong,Yifan Zhang,Zhonghong Xia,Yong Wang
出处
期刊:Angewandte Chemie [Wiley]
被引量:18
标识
DOI:10.1002/ange.202420752
摘要

Abstract Developing ethanol oxidation electrocatalysts with high catalytic activity, durability, and resistance to CO poisoning remains a major challenge. In recent years, high‐entropy alloys (HEAs) with unique physical and chemical properties have garnered substantial attention. Herein, a class of HEA nanodendrites are designed by a simple wet‐chemical method. The mass activity and specific activity of the septenary PtIrRhCoFeNiCu high‐entropy alloy catalyst are 2.13 A mg Pt −1 /1.05 A mg Pt+Ir+Rh −1 and 2.95 mA cm −2 , which reach 5.76‐/2.84‐fold and 5.57‐fold improvements relative to commercial Pt/C (0.37 A mg Pt −1 and 0.53 mA cm −2 ), respectively. Remarkably, after the i‐t test of up to 100,000 s and the accelerated durability test of 1500 cycles, 81.22 % and 68.54 % of the initial mass activity are well retained, respectively. The lattice distortion‐associated local tensile strain as demonstrated by increased Pt−Pt bond length enhances ethanol adsorption and reduces reaction barriers. Moreover, hysteresis diffusion effect induced by lattice distortion in the HEA nanodendrites contributes to their superb ethanol oxidation stability. In situ infrared absorption spectroscopy reveals that the three HEA nanodendrites mainly follow C1 pathway with C−C bond breaking to form CO followed by CO oxidation especially at a wide range of high potentials. Theoretical calculations reveal that among these HEAs, PtIrRhCoFeNiCu possesses the lowest energy barrier for C−C bond scission due to synergy among Pt/Ir/Rh and water dissociation due to synergy among Co/Fe/Ni/Cu. This work provides insights to design unique HEA nanostructures with extraordinary catalytic performances and selectivity compared to conventional nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助渔夫采纳,获得10
刚刚
聂聪发布了新的文献求助10
1秒前
请叫我风吹麦浪应助猫猫采纳,获得10
1秒前
请叫我风吹麦浪应助猫猫采纳,获得10
1秒前
1秒前
xzz完成签到,获得积分10
2秒前
爱科研发布了新的文献求助10
3秒前
秀丽的千山关注了科研通微信公众号
3秒前
帅气的小兔子完成签到 ,获得积分10
3秒前
安琪完成签到,获得积分10
3秒前
期期完成签到,获得积分10
3秒前
4秒前
4秒前
罗山柳完成签到,获得积分10
5秒前
5秒前
彭于晏应助视野胤采纳,获得10
5秒前
5秒前
5秒前
深情安青应助咿咿呀呀采纳,获得10
5秒前
龙龙完成签到,获得积分10
6秒前
MR_Z完成签到,获得积分10
6秒前
蝉鸣完成签到,获得积分10
6秒前
6秒前
LY完成签到,获得积分10
6秒前
火山蜗牛完成签到,获得积分10
7秒前
可靠的海豚关注了科研通微信公众号
7秒前
酷炫小懒虫完成签到,获得积分0
8秒前
9秒前
冷静凌文完成签到,获得积分10
9秒前
9秒前
BeeC001完成签到,获得积分10
9秒前
LY发布了新的文献求助10
9秒前
9秒前
考博圣体完成签到 ,获得积分10
10秒前
乔垣结衣发布了新的文献求助30
10秒前
gu123完成签到,获得积分10
10秒前
香蕉发布了新的文献求助10
10秒前
10秒前
木鸽子完成签到,获得积分10
10秒前
小废柴布布丁完成签到,获得积分20
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968964
求助须知:如何正确求助?哪些是违规求助? 3513877
关于积分的说明 11170569
捐赠科研通 3249201
什么是DOI,文献DOI怎么找? 1794692
邀请新用户注册赠送积分活动 875297
科研通“疑难数据库(出版商)”最低求助积分说明 804755