已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning–driven bacterial cytological profiling to determine antimicrobial mechanisms in Mycobacterium tuberculosis

结核分枝杆菌 肺结核 计算生物学 抗菌剂 药物发现 仿形(计算机编程) 细菌转录 生物 医学 生物信息学 微生物学 计算机科学 遗传学 病理 发起人 操作系统 基因表达 基因
作者
Diana Quach,Marc D. Sharp,Sara Ahmed,Lauren Ames,Amala Bhagwat,Aditi Deshpande,Tanya Parish,Joe Pogliano,Joseph Sugie
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (6)
标识
DOI:10.1073/pnas.2419813122
摘要

Tuberculosis (TB), caused by Mycobacterium tuberculosis , remains a significant global health threat, affecting an estimated 10.6 million people in 2022. The emergence of multidrug resistant and extensively drug resistant strains necessitates the development of novel and effective drugs. Accelerating the determination of mechanisms of action (MOAs) for these drugs is crucial for advancing TB treatment. This study introduces MycoBCP, a unique adaptation of bacterial cytological profiling (BCP) tailored to M. tuberculosis , utilizing the application of convolutional neural networks (CNNs) within BCP to overcome challenges posed by traditional image analysis techniques. Using MycoBCP, we analyzed the morphological effects of various antimicrobial compounds on M. tuberculosis , capturing broad patterns rather than relying on precise cell segmentation. This approach circumvented issues such as cell clumping and uneven staining, which are prevalent in M. tuberculosis . In a blind test, MycoBCP accurately identified the MOA for 96% of the compounds, with a single misclassification of rifabutin, which was incorrectly categorized as affecting translation rather than transcription. The similar morphologies resulting from transcription and translation inhibition indicate a need for further refinement to distinguish them more effectively. Application of MycoBCP to a series of antitubercular agents successfully identified known MOAs and revealed unique effects, demonstrating its utility in early drug discovery and development. Our findings underscore the potential of CNN-based BCP to enhance the accuracy and efficiency of MOA determination, particularly for challenging pathogens like M. tuberculosis . MycoBCP represents a significant advancement in TB drug development, offering a robust and adaptable method for high-throughput screening of antimicrobial compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴宵发布了新的文献求助10
刚刚
魔幻安南完成签到 ,获得积分10
1秒前
3秒前
xyydhcg完成签到,获得积分10
4秒前
ddizi完成签到,获得积分20
5秒前
虚幻的城完成签到,获得积分10
7秒前
8秒前
WHR发布了新的文献求助10
9秒前
莉莉斯完成签到 ,获得积分10
10秒前
DamenS发布了新的文献求助10
12秒前
Lshyong完成签到 ,获得积分10
13秒前
yaoyh_gc发布了新的文献求助10
16秒前
害羞龙猫完成签到 ,获得积分10
16秒前
zhxi完成签到,获得积分10
16秒前
可爱的函函应助霸气乐菱采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
情怀应助科研通管家采纳,获得10
22秒前
Orange应助Cynthia采纳,获得10
22秒前
22秒前
无牙发布了新的文献求助10
23秒前
上善若水完成签到 ,获得积分20
26秒前
apollo3232发布了新的文献求助10
27秒前
lingo完成签到 ,获得积分10
28秒前
JamesPei应助sxy采纳,获得10
29秒前
赘婿应助wdj596采纳,获得10
30秒前
30秒前
xl完成签到 ,获得积分10
30秒前
DamenS发布了新的文献求助10
31秒前
zhouleibio完成签到,获得积分10
33秒前
35秒前
huamo发布了新的文献求助10
35秒前
36秒前
sxy完成签到,获得积分20
38秒前
XJT007完成签到 ,获得积分10
39秒前
39秒前
独特听芹发布了新的文献求助10
40秒前
wdj596发布了新的文献求助10
41秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466698
求助须知:如何正确求助?哪些是违规求助? 3059497
关于积分的说明 9066694
捐赠科研通 2749969
什么是DOI,文献DOI怎么找? 1508823
科研通“疑难数据库(出版商)”最低求助积分说明 697098
邀请新用户注册赠送积分活动 696896