亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of MRI-based tumor heterogeneity analysis for identification and pathologic staging of breast phyllodes tumors

叶状瘤 医学 乳腺肿瘤 肿瘤异质性 乳房磁振造影 鉴定(生物学) 放射科 乳腺癌 病理 肿瘤科 内科学 乳腺摄影术 癌症 生物 植物
作者
Liang Yue,Qingyu Li,Jiahao Li,Lan Zhang,Ying Wang,Binjie Wang,Changfu Wang
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:117: 110325-110325
标识
DOI:10.1016/j.mri.2025.110325
摘要

To explore the application value of MRI-based imaging histology and deep learning model in the identification and classification of breast phyllodes tumors. Seventy-seven patients diagnosed as breast phyllodes tumors and fibroadenomas by pathological examination were retrospectively analyzed, and traditional radiomics features, subregion radiomics features, and deep learning features were extracted from MRI images, respectively. The features were screened and modeled using variance selection method, statistical test, random forest importance ranking method, Spearman correlation analysis, least absolute shrinkage and selection operator (LASSO). The efficacy of each model was assessed using the subject operating characteristic (ROC) curve, The DeLong test was used to assess the differences in the AUC values of the different models, and the clinical benefit of each model was assessed using the decision curve (DCA), and the predictive accuracy of the model was assessed using the calibration curve (CCA). Among the constructed models for classification of breast phyllodes tumors, the fusion model (AUC: 0.97) had the best diagnostic efficacy and highest clinical benefit. The traditional radiomics model (AUC: 0.81) had better diagnostic efficacy compared with subregion radiomics model (AUC: 0.70). De-Long test, there is a statistical difference between the fusion model traditional radiomics model, and subregion radiomics model in the training group. Among the models constructed to distinguish phyllodes tumors from fibroadenomas in the breast, the TDT_CIDL model (AUC: 0.974) had the best predictive efficacy and the highest clinical benefit. De-Long test, the TDT_CI combination model was statistically different from the remaining five models in the training group. Traditional radiomics models, subregion radiomics models and deep learning models based on MRI sequences can help to differentiate benign from junctional phyllodes tumors, phyllodes tumors from fibroadenomas, and provide personalized treatment for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
leafye发布了新的文献求助10
6秒前
11秒前
热带蚂蚁完成签到 ,获得积分10
18秒前
劲秉应助微笑小伙采纳,获得20
22秒前
FashionBoy应助dongdong采纳,获得10
23秒前
脑洞疼应助luna采纳,获得10
27秒前
35秒前
luna发布了新的文献求助10
39秒前
47秒前
NexusExplorer应助luna采纳,获得10
53秒前
1分钟前
dongdong发布了新的文献求助10
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
iorpi发布了新的文献求助10
1分钟前
1分钟前
斐波那契的兔子完成签到,获得积分10
1分钟前
luna发布了新的文献求助10
1分钟前
思源应助平常的白筠采纳,获得10
1分钟前
啊啊啊完成签到 ,获得积分10
1分钟前
无花果应助luna采纳,获得10
1分钟前
xxxxxxh发布了新的文献求助20
1分钟前
所所应助畅快的涵蕾采纳,获得10
1分钟前
1分钟前
xxxxxxh完成签到,获得积分10
1分钟前
1分钟前
luna发布了新的文献求助10
1分钟前
大气的玉米完成签到,获得积分10
1分钟前
dongdong完成签到,获得积分20
2分钟前
bkagyin应助luna采纳,获得10
2分钟前
2分钟前
luna发布了新的文献求助10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
zxy应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
艾米发布了新的文献求助10
2分钟前
迅速易云发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466798
求助须知:如何正确求助?哪些是违规求助? 3059583
关于积分的说明 9067131
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896