Application of MRI-based tumor heterogeneity analysis for identification and pathologic staging of breast phyllodes tumors

叶状瘤 医学 乳腺肿瘤 肿瘤异质性 乳房磁振造影 鉴定(生物学) 放射科 乳腺癌 病理 肿瘤科 内科学 乳腺摄影术 癌症 生物 植物
作者
Liang Yue,Qingyu Li,Jiahao Li,Lan Zhang,Ying Wang,Binjie Wang,Changfu Wang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:117: 110325-110325
标识
DOI:10.1016/j.mri.2025.110325
摘要

To explore the application value of MRI-based imaging histology and deep learning model in the identification and classification of breast phyllodes tumors. Seventy-seven patients diagnosed as breast phyllodes tumors and fibroadenomas by pathological examination were retrospectively analyzed, and traditional radiomics features, subregion radiomics features, and deep learning features were extracted from MRI images, respectively. The features were screened and modeled using variance selection method, statistical test, random forest importance ranking method, Spearman correlation analysis, least absolute shrinkage and selection operator (LASSO). The efficacy of each model was assessed using the subject operating characteristic (ROC) curve, The DeLong test was used to assess the differences in the AUC values of the different models, and the clinical benefit of each model was assessed using the decision curve (DCA), and the predictive accuracy of the model was assessed using the calibration curve (CCA). Among the constructed models for classification of breast phyllodes tumors, the fusion model (AUC: 0.97) had the best diagnostic efficacy and highest clinical benefit. The traditional radiomics model (AUC: 0.81) had better diagnostic efficacy compared with subregion radiomics model (AUC: 0.70). De-Long test, there is a statistical difference between the fusion model traditional radiomics model, and subregion radiomics model in the training group. Among the models constructed to distinguish phyllodes tumors from fibroadenomas in the breast, the TDT_CIDL model (AUC: 0.974) had the best predictive efficacy and the highest clinical benefit. De-Long test, the TDT_CI combination model was statistically different from the remaining five models in the training group. Traditional radiomics models, subregion radiomics models and deep learning models based on MRI sequences can help to differentiate benign from junctional phyllodes tumors, phyllodes tumors from fibroadenomas, and provide personalized treatment for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助lili采纳,获得10
刚刚
刚刚
失眠青柏发布了新的文献求助10
1秒前
1秒前
1秒前
乐正天与发布了新的文献求助30
1秒前
子车白易发布了新的文献求助10
2秒前
hmh发布了新的文献求助10
2秒前
Yey完成签到 ,获得积分10
2秒前
L14完成签到 ,获得积分10
3秒前
qihao309发布了新的文献求助10
3秒前
bkagyin应助豆豆浆采纳,获得10
3秒前
嘻嘻完成签到 ,获得积分10
3秒前
无头的小米完成签到,获得积分10
4秒前
33发布了新的文献求助50
4秒前
00发布了新的文献求助10
5秒前
风中凡白发布了新的文献求助10
5秒前
缓慢醉卉发布了新的文献求助10
5秒前
laphong完成签到 ,获得积分10
5秒前
5秒前
可乐鸡翅zqq完成签到 ,获得积分10
6秒前
天真的雅绿完成签到,获得积分10
6秒前
rx发布了新的文献求助10
6秒前
追寻的汉堡关注了科研通微信公众号
6秒前
6秒前
IMALL发布了新的文献求助10
6秒前
hmh完成签到,获得积分20
7秒前
默默平文发布了新的文献求助10
7秒前
妃莫笑发布了新的文献求助10
8秒前
9秒前
hadern完成签到,获得积分10
9秒前
楚子航完成签到,获得积分10
9秒前
10秒前
10秒前
顾矜应助登山人采纳,获得10
10秒前
wan发布了新的文献求助10
10秒前
狂野世立发布了新的文献求助10
11秒前
用户完成签到,获得积分10
11秒前
00关闭了00文献求助
11秒前
情怀应助小树苗采纳,获得10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767565
求助须知:如何正确求助?哪些是违规求助? 3312194
关于积分的说明 10162593
捐赠科研通 3027488
什么是DOI,文献DOI怎么找? 1661538
邀请新用户注册赠送积分活动 794088
科研通“疑难数据库(出版商)”最低求助积分说明 755998