Applied Research on Face Image Beautification Based on a Generative Adversarial Network

美化 对抗制 面子(社会学概念) 生成语法 图像(数学) 人工智能 生成对抗网络 计算机视觉 计算机科学 工程类 语言学 哲学 土木工程
作者
Junying Gan,Jianqiang Liu
出处
期刊:Electronics [MDPI AG]
卷期号:13 (23): 4780-4780
标识
DOI:10.3390/electronics13234780
摘要

Generative adversarial networks (GANs) are widely used in image conversion tasks and have shown unique advantages in the context of face image beautification, as they can generate high-resolution face images. When used alongside potential spatial adjustments, it becomes possible to control the diversity of the generated images and learn from small amounts of labeled data or unsupervised data, thus reducing the costs associated with data acquisition and labeling. At present, there are some problems in terms of face image beautification processes, such as poor learning of the details of a beautification style, the use of only one beautification effect, and distortions being present in the generated face image. Therefore, this study proposes the facial image beautification generative adversarial network (FIBGAN) method, in which images with different beautification style intensities are generated with respect to an input face image. First, a feature pyramid network is used to construct a pre-encoder to generate multi-layer feature vectors containing the details of the face image, such that it can learn the beautification details of the face images during the beautification style transmission. Second, the pre-encoder combines the separate style vectors generated with respect to the original image and the style image to transfer the beautification style, such that the generated images have different beautification style intensities. Finally, the weight demodulation method is used as the beautification style transmission module in the generator, and the normalization operation on the feature map is replaced with the convolution weight to eliminate any artifacts from the feature map and reduce distortions in the generated images. The experimental results show that the FIBGAN model not only transmits the beautification style to face images in a detailed manner but also generates face images with different beautification intensities while reducing the distortion of the generated face images. Therefore, it can be widely used in the beauty and fashion industry, advertising, and media production.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
理想三寻完成签到,获得积分10
4秒前
阳光不弱发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助XCY采纳,获得10
7秒前
科研通AI2S应助QAQ采纳,获得10
8秒前
9秒前
DrLiu完成签到,获得积分10
10秒前
11秒前
GU发布了新的文献求助10
13秒前
杳鸢应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
15秒前
baby的跑男完成签到,获得积分10
16秒前
D515发布了新的文献求助10
17秒前
17秒前
Tao2023发布了新的文献求助10
19秒前
飞羽发布了新的文献求助10
21秒前
lance发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
xyz关闭了xyz文献求助
26秒前
GU完成签到,获得积分10
26秒前
费胜发布了新的文献求助10
28秒前
30秒前
33秒前
香蕉觅云应助暴躁的信封采纳,获得10
34秒前
称心语风发布了新的文献求助10
34秒前
慕青应助tianshicanyi采纳,获得10
35秒前
华仔应助阳光不弱采纳,获得10
35秒前
Yifan2024应助卤味狮子头采纳,获得30
37秒前
平淡萤完成签到,获得积分10
39秒前
八二力完成签到 ,获得积分10
40秒前
41秒前
xy9147完成签到,获得积分20
43秒前
费胜完成签到 ,获得积分10
43秒前
你好好好发布了新的文献求助10
44秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378889
求助须知:如何正确求助?哪些是违规求助? 2994306
关于积分的说明 8758995
捐赠科研通 2678944
什么是DOI,文献DOI怎么找? 1467391
科研通“疑难数据库(出版商)”最低求助积分说明 678659
邀请新用户注册赠送积分活动 670283