已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SiC MOSFET with Integrated SBD Device Performance Prediction Method Based on Neural Network

人工神经网络 MOSFET 电子工程 计算机科学 卷积神经网络 电压 机器学习 人工智能 工程类 电气工程 晶体管
作者
Xiping Niu,Ling Sang,Xiaoling Duan,Shijie Gu,Peng Zhao,Tao Zhu,Kaixuan Xu,Yawei He,Zihan Li,Jincheng Zhang,Rui Jin
出处
期刊:Micromachines [MDPI AG]
卷期号:16 (1): 55-55
标识
DOI:10.3390/mi16010055
摘要

The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD. This study introduces a novel approach utilizing neural network machine learning to predict the static and dynamic characteristics of the SBD-MOSFET. In this research, SBD-MOSFET devices are modeled and simulated using Sentaurus TCAD(2017) software, resulting in the generation of 625 sets of device structure and sample data, which serve as the sample set for the neural network. These input variables are then fed into the neural network for prediction. The findings indicate that the mean square error (MSE) values for the threshold voltage (Vth), breakdown voltage (BV), specific on-resistance (Ron), and total switching power dissipation (E) are 0.0051, 0.0031, 0.0065, and 0.0220, respectively, demonstrating a high degree of accuracy in the predicted values. Meanwhile, in the comparison of convolutional neural networks and machine learning, the CNN accuracy is much higher than the machine learning methods. This method of predicting device performance via neural networks offers a rapid means of designing SBD-MOSFETs with specified performance targets, thereby presenting significant advantages in accelerating research on SBD-MOSFET performance prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxy发布了新的文献求助10
1秒前
1秒前
3秒前
嘟噜完成签到,获得积分10
4秒前
仇夜羽完成签到 ,获得积分10
5秒前
伶俐雨双发布了新的文献求助10
5秒前
喜悦兔子完成签到 ,获得积分10
6秒前
7秒前
CodeCraft应助阿哈采纳,获得10
8秒前
9秒前
9秒前
11秒前
彩色德天发布了新的文献求助10
11秒前
完美凝海完成签到 ,获得积分10
12秒前
12秒前
细心的幻姬完成签到 ,获得积分10
13秒前
13秒前
13秒前
AIA7发布了新的文献求助10
14秒前
15秒前
15秒前
Cecilia完成签到,获得积分10
16秒前
Venus发布了新的文献求助10
17秒前
yongfeng应助无私追命采纳,获得10
19秒前
赘婿应助伶俐雨双采纳,获得10
21秒前
火星上的菲鹰应助AIA7采纳,获得10
22秒前
连长完成签到,获得积分10
22秒前
22秒前
扶摇完成签到 ,获得积分10
25秒前
香蕉觅云应助LTY采纳,获得10
27秒前
S.S.N发布了新的文献求助10
27秒前
酷波er应助奔跑的小鹰采纳,获得30
27秒前
研友_VZG7GZ应助柯柯采纳,获得80
29秒前
上官若男应助蘑菇采纳,获得10
29秒前
29秒前
声声慢发布了新的文献求助10
29秒前
29秒前
欣喜忻完成签到 ,获得积分10
29秒前
毛豆应助陪你长大采纳,获得10
30秒前
聪明芹发布了新的文献求助10
32秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023097
关于积分的说明 8903417
捐赠科研通 2710488
什么是DOI,文献DOI怎么找? 1486520
科研通“疑难数据库(出版商)”最低求助积分说明 687075
邀请新用户注册赠送积分活动 682312