Predicting lane change maneuver and associated collision risks based on multi-task learning

任务(项目管理) 碰撞 毒物控制 计算机科学 伤害预防 运输工程 模拟 工程类 航空学 计算机安全 物理医学与康复 医疗急救 医学 系统工程
作者
Liu Yang,Jike Zhang,Nengchao Lyu,Qianxi Zhao
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:209: 107830-107830
标识
DOI:10.1016/j.aap.2024.107830
摘要

The lane-changing (LC) maneuver of vehicles significantly impacts highway traffic safety. Therefore, proactively predicting LC maneuver and associated collision risk is of paramount importance. However, most of the previous LC risk prediction research overlooks the prediction of LC maneuver, limiting its practical utility. Furthermore, the effectiveness of LC maneuver recognition tends to be moderate as the prediction horizon extends. To fill the gaps, this paper proposes a multi-task learning model that simultaneously predicts the probability of LC maneuver, LC risk level, and time-to-lane-change (TTLC), while further analyzing the intrinsic correlation between LC maneuver and LC risk. The model consists of a Convolutional Neural Network (CNN) and two Long Short-Term Memory networks (LSTM). The CNN is employed to extract and fuse shared features from the dynamic driving environment, while one LSTM is dedicated to estimating the probability of LC maneuver and TTLC, and the other LSTM focuses on estimating the LC risk level. Evaluation of the proposed method on the HighD dataset demonstrates its excellent performance. It can almost predict all LC maneuvers within 2 s before the vehicle crosses lane boundaries, with an 80% recall rate for high-risk LC levels. Even 3.6 s before crossing lane boundaries, the model can still predict approximately 95% of LC maneuvers. The use of the multi-task learning strategy enhances the model's understanding of traffic scenarios and its prediction robustness. LC risk analysis based on the HighD dataset shows that the risk distribution and influencing factors for left and right lane changes differ. In right lane changes, collision risks primarily arise from the leading and following vehicles in the current lane, while in left lane changes, collision risks mainly stem from the leading vehicle in the current lane and the following vehicle in the target lane. The proposed approach can be applied to advanced driver assistance systems (ADAS) to reliably and early identify LC during highway driving, while correcting potentially dangerous LC maneuvers, ensuring driving safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11发布了新的文献求助10
2秒前
2秒前
赋成完成签到 ,获得积分10
2秒前
leisome完成签到 ,获得积分10
2秒前
晚意完成签到,获得积分10
3秒前
一张不够花完成签到,获得积分10
3秒前
小mol仙完成签到,获得积分10
3秒前
情怀应助Anxinxin采纳,获得20
4秒前
科目三应助tzy采纳,获得10
4秒前
研友_8y2G0L发布了新的文献求助10
5秒前
5秒前
zhaoxiaonuan完成签到,获得积分10
5秒前
5秒前
乐乐应助xiao牛采纳,获得10
5秒前
Xu发布了新的文献求助50
6秒前
王半书完成签到 ,获得积分10
7秒前
留胡子的锦程完成签到,获得积分20
7秒前
7秒前
怕孤单的斑马完成签到 ,获得积分10
7秒前
赘婿应助害羞的飞槐采纳,获得10
7秒前
面壁者发布了新的文献求助10
8秒前
diu应助科研苦笔采纳,获得10
8秒前
威武语儿完成签到,获得积分10
9秒前
9秒前
www发布了新的文献求助10
9秒前
diguohu完成签到,获得积分10
10秒前
10秒前
11秒前
温柔樱桃应助林伟采纳,获得10
12秒前
卡尔加里完成签到,获得积分10
12秒前
鸡蛋灌饼发布了新的文献求助10
13秒前
糊涂的百川完成签到,获得积分10
13秒前
13秒前
13秒前
Chris发布了新的文献求助10
13秒前
张嘉佳完成签到 ,获得积分20
14秒前
迅速的萧完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245223
求助须知:如何正确求助?哪些是违规求助? 2888917
关于积分的说明 8256094
捐赠科研通 2557285
什么是DOI,文献DOI怎么找? 1385910
科研通“疑难数据库(出版商)”最低求助积分说明 650265
邀请新用户注册赠送积分活动 626494