Predicting lane change maneuver and associated collision risks based on multi-task learning

任务(项目管理) 碰撞 毒物控制 计算机科学 伤害预防 运输工程 模拟 工程类 航空学 计算机安全 物理医学与康复 医疗急救 医学 系统工程
作者
Liu Yang,Jike Zhang,Nengchao Lyu,Qianxi Zhao
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:209: 107830-107830
标识
DOI:10.1016/j.aap.2024.107830
摘要

The lane-changing (LC) maneuver of vehicles significantly impacts highway traffic safety. Therefore, proactively predicting LC maneuver and associated collision risk is of paramount importance. However, most of the previous LC risk prediction research overlooks the prediction of LC maneuver, limiting its practical utility. Furthermore, the effectiveness of LC maneuver recognition tends to be moderate as the prediction horizon extends. To fill the gaps, this paper proposes a multi-task learning model that simultaneously predicts the probability of LC maneuver, LC risk level, and time-to-lane-change (TTLC), while further analyzing the intrinsic correlation between LC maneuver and LC risk. The model consists of a Convolutional Neural Network (CNN) and two Long Short-Term Memory networks (LSTM). The CNN is employed to extract and fuse shared features from the dynamic driving environment, while one LSTM is dedicated to estimating the probability of LC maneuver and TTLC, and the other LSTM focuses on estimating the LC risk level. Evaluation of the proposed method on the HighD dataset demonstrates its excellent performance. It can almost predict all LC maneuvers within 2 s before the vehicle crosses lane boundaries, with an 80% recall rate for high-risk LC levels. Even 3.6 s before crossing lane boundaries, the model can still predict approximately 95% of LC maneuvers. The use of the multi-task learning strategy enhances the model's understanding of traffic scenarios and its prediction robustness. LC risk analysis based on the HighD dataset shows that the risk distribution and influencing factors for left and right lane changes differ. In right lane changes, collision risks primarily arise from the leading and following vehicles in the current lane, while in left lane changes, collision risks mainly stem from the leading vehicle in the current lane and the following vehicle in the target lane. The proposed approach can be applied to advanced driver assistance systems (ADAS) to reliably and early identify LC during highway driving, while correcting potentially dangerous LC maneuvers, ensuring driving safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助兮尔采纳,获得10
1秒前
1秒前
djiwisksk66应助fle采纳,获得10
2秒前
QQ发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
Kin完成签到,获得积分10
5秒前
6秒前
孙天成完成签到,获得积分20
6秒前
6秒前
Lucas应助蒲云海采纳,获得30
7秒前
是玥玥啊发布了新的文献求助10
7秒前
xuanyu完成签到,获得积分10
8秒前
丰富飞阳发布了新的文献求助20
9秒前
yznfly应助机灵冥王星采纳,获得20
9秒前
10秒前
领导范儿应助siyan156采纳,获得10
11秒前
11秒前
朴实的面包完成签到,获得积分10
12秒前
RATHER发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
16秒前
光轮2000完成签到 ,获得积分10
16秒前
xiaoyu完成签到,获得积分10
17秒前
结实的以莲完成签到,获得积分20
17秒前
宁ning发布了新的文献求助10
17秒前
18秒前
卡卡西应助黯然采纳,获得10
18秒前
18秒前
lalala发布了新的文献求助10
19秒前
N型半导体发布了新的文献求助10
19秒前
斯文败类应助张张张采纳,获得10
19秒前
20秒前
海浪发布了新的文献求助10
21秒前
bian完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303